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SINTESIS 

 

 

Se presenta el Capitulo  “Granger Causality on Spatial Manifolds. Applications 

to neuroimaging” del “Handbook of Time Series Analysis” ( Wiley-VCH.2006) 

para optar por el grado de Doctor en Ciencias. Resume los aportes realizados 

por el autor en la determinación de la conectividad efectiva y funcional de 

estructuras cerebrales  humanas, evaluada a partir de Neuroimágenes 

multimodales: el electroencefalograma (EEG), resonancia magnética funcional 

(fMRI), registros combinados de ambos (EEG/fMRI). Se generaliza el concepto 

de causalidad de Granger, anteriormente descrito solo para sistemas discretos, 

para sistemas definidos sobre variedades continuas—así posibilitando la 

modelación de la corteza cerebral. Ha despertado interés porque permite 

identificar in vivo los circuitos que se activan en distintos estados cerebrales. El 

capítulo viene acompañado de los 6 artículos, refrendados en la “Web of 

Science” con 259 citas, de las cuales es la consolidación y generalización. Uno 

de los artículos fue  publicado en un número especial de la “Philosophical 

Transactions of the Royal Society”, editado por el propio optante.  Se incluye 

además un artículo recientemente solicitado por la revista NeuroImage como 

síntesis de la polémica generada por el trabajo. Como se describe en detalle en 

las conclusiones generales el problema de la conectividad cerebral es clave en 

el conocimiento del cerebro normal y enfermo y se sustenta en los avances 

más recientes del estudio estadístico de las relaciones causales y la biofísica 

cerebral—al cual ha contribuido en forma importante el grupo que dirige el 

autor. 



SIGLAS 

En este trabajo se usan las siglas de los términos en ingles para facilitar la 

lectura de los artículos que están en ese idioma. Los equivalentes en español 

están en la tercera columna. 

 

SIGLAS INGLES ESPAñOL 

fMRI Functional Magnetic 

Resonance Imaging 

Resonancia magnética 

funcional 

ELEG Electroencephalography Electroencefalografía 

DCM Dynamic Causal Modeling Modelación Dinámica Causal 

ICA Independent Component 

Analysis 

Análisis de componentes 

independientes 

SPM Statistical Parametric Mapping Mapeo Paramétrico 

Estadístico 

MEG Magnetoencephalogtaphy Magneto encefalografía 

MAR Multivariate Autoregressive 

Model 

Modelo Autoregresivo 

Multivariado 

BOLD Blood Oxigen Level Dependent Dependiente de Nivel de 

Oxigeno Sanguíneo 

SMAR Sparse Multivariate 

Autoregressive Model 

Modelo Autoregresivo 

Multivariado ¨ralo¨ 

FDR False Dsiscovery Rate Tasa de Falsos 

Descubrimientos 

FDA Functional Data Analysis Análisis de datos Funcionales 
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INTRODUCCION 

Titulo del trabajo: 

Casualidad de Granger sobre Variedades espaciales. Aplicaciones a las 

Neuroimagenes 

Autor: Pedro A. Valdes Sosa, Centro de Neurociencias de Cuba 

El trabajo que se presenta par optar por el título de Dr. en Ciencias es el 

capitulo 18 del Libro Handbook of time Series Analysis, titulado ¨Granger 

casuality on spatial manifolds: appliactions to Neurimages¨, publicado por 

la Wiley-VCH en el año 2006. 

Importancia del Tema de  Conectividad Cerebral 

Hasta hace poco la investigación con  Neuroimagenes se centraba sobre la 

Localización anatómica de cambios estructurales y funcionales entre 

condiciones distintas experimentales o grupos. Sin embargo, fue 

tempranamente reconocido (solo basta recordar los trabajos de Luria) que 

muchas funciones cerebrales no son atributos de una estructura neural 

particular, sino que emergen de la integración de la actividad de masas  

neurales ampliamente distribuidas. Por tal motivo, resulta de esencial 

importancia el estudio de la Conectividad Cerebral. Debemos distinguir tres 

tipos fundamentales de Conectividad cerebral: anatómica, efectiva y  

funcional.  
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En la Fig. 1 se muestra la relación entre los tres tipos de conectividad. 

 

La conectividad anatómica entre dos regiones cerebrales (A y B) se refiere a la 

existencia de proyecciones directas de axones de una a la otra. Cuando alguna 

de estas conexiones es activada en una función cerebral determinada se habla 

de conectividad efectiva, lo cual implica que la activación de la estructura A es 

causa directa de la activación de la estructura B. Finalmente,  se habla de 

conectividad funcional cuando la actividad en una estructura A está 

correlacionada con la de otra estructura B, o sea, por mediación directa o a 

través de  una tercera estructura C. 

Un ejemplo sencillo que ilustra estas definiciones es el siguiente: existe 

conectividad anatómica entre la retina y el núcleo geniculado lateral y entre el 

núcleo geniculado lateral y la corteza estriada (visual).  
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Por tanto, si se establece que la activación de ciertas partes del geniculado  

lateral produce activación de alguna parte de la corteza estriada, estamos en 

presencia de conectividad efectiva. Sin embargo, establecer que la activación 

de la retina produce una activación de la corteza estriada, solo demuestra que 

hay una conectividad funcional entre ambas, ya que es mediada por el 

geniculado lateral. 

En la práctica experimental la situación es más compleja, pues ninguno de 

estos tipos de conectividad se puede medir directamente, sino que son 

estimados de forma imperfecta, Por tanto, la estimación de cualquier tipo de 

conectividad, es de hecho, la solución a un Problema Inverso.  

Pongamos algunos ejemplos: 

• Un método que estima de forma imperfecta la conectividad anatómica 

es la Tractografiía por MRI de difusión, en la porción inferior de la figura 1.i se 

muestra un grafo de las conexiones anatómicas estimadas para un sujeto. En 

este grafo los nodos son regiones corticales circunscritas y se dibuja un enlace 

entre dos nodos, solo si se ha determinado que existe un tracto que conecta  

esas dos regiones. El grafo no es dirigido ya que la Tractografia no puede 

determinar la direcciones de las proyecciones axonales. A priori, se conoce que 

habrá una proporción de enlaces estimados falsos positivos y negativos. 

• Otro método para la estimación de la conectividad anatómica es el de 

realizar lesiones circunscritas en el cerebro de animales experimentales y 

estudiar la degeneración axonal resultante.  
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De hecho existe, para el cerebro de la especie Macaca Mulatta, una base de 

datos CoCoMac (Collations of Conectivity data on the Macaque Brain), con las 

conexiones deducidas mediante lesiones. Las mismas se clasifican en 

demostradas, probables y desconocidas, lo cual refleja las imperfecciones de la 

técnica (URL: http\\cocomac.org/home.asp) 

• Los métodos para la estimación de la conectividad funcional también 

producen un grafo no dirigido, donde los enlaces ahora se postulan cuando hay 

asociación entre las series temporales de los voxels de las Neuroimagenes 

funcionales tales como el fMRI o el EEG. Estas asociaciones se determinan 

con métodos que varían desde la correlación simple de las series de tiempo,  

hasta el uso de métodos mas sofisticados como el análisis de los componentes 

independientes ICA (Independent Component Analysis). En la figura 1.ii se 

muestra un grafo formado con las correlaciones de la actividad de fMRI. 

• Para el estudio de la integración funcional cerebral resulta óptimo 

determinar la Conectividad Efectiva.  Para su estimación existen dos 

enfoques complementarios que han suscitado mucho interés recientemente. 

Uno de ellos es el DCM (Dynamic Causal Modeling), basado en modelos 

biofísicos de la interacción entre zonas corticales. El otro es un método 

importado de la econometría, la causalidad de Granger, que mide la causalidad 

a través de la posibilidad de predecir una serie de tiempo por otra. Ambas 

pretenden producir grafos con enlaces dirigidos que postulan una relación 

causal entre las regiones cerebrales involucradas. Anexo G. 
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En forma similar a como el Mapeo Paramétrico Estadístico (SPM) se emplea 

para determinar la localización de cambios estructurales o funcionales, pueden  

también aplicarse los métodos de SPM a las conexiones donde son mostrados 

aquellos enlaces que sobrepasen un umbral estadístico.  

Como ejemplo de aplicación de estos conceptos se muestra,  en la Figura 2.ii, 

el grafo de conectividad efectiva correspondiente al experimento ya descrito de 

caras con expresiones emocionales y neutras. Este grafo muestra los enlaces 

que entre regiones cerebrales se activan de forma distinta para las dos 

condiciones experimentales. Anexo A. 
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Aportes originales enumerados: 

El capitulo que se presenta para optar por el Grado de Doctor en Ciencias, es 

la consolidación y generalización  de  6 artículos científicos referenciados en la 

“Web of Science” y que se listan en la tabla I.  

1. Introducción, por primera vez en la literatura, de un tratamiento  de la 

causalidad de Granger (aporte matemático) sobre conjuntos de 

variables extendidas espacialmente.                                            

2. Introducción, por primera vez en la literatura, del uso de método de 

regresión penalizada para la estimación de los coeficientes de un modelo auto-

regresivo multivariado. 

3. Integración de este concepto a las Neuroimágenes funcionales como  un 

método de mapeo paramétrico estadístico (SPM)  sobre conectividades y no 

sobre activaciones. 

4. Demostración de la utilidad de estos métodos para el estudio del 

funcionamiento cerebral espontáneo y durante tareas cognitivas utilizando tanto 

la resonancia magnética funcional (fMRI) como el registro concurrente de fMRI 

y electroencefalograma (EEG).  
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Tabla I 

 Articulo Anexos Factor 
de 
impacto 
de la 
revista 

Total 
de citas 

1 Valdes-Sosa PA, Sanchez-Bornot M, 
Lage-Castellanos A, Vega-
Hernandez M, Bosch-Bayard , Melie-
Garcia L, Canales-Rodriguez E, 
2005. Estimating brain functional 
connectivity with sparse multivariate 
autoregression. Philosophical 
Transactions of the Royal Society B-
Biological Sciences 360: 969-981 

A 4.99 44 

2 Miwakeichi F, Martinez-Montes E, 
Valdes-Sosa PA, Nishiyama N, 
Mizuhara H, Yamaguchia Y, 2004. 
Decomposing EEG data into space-
time-frequency components using 
Parallel Factor Analysis. Neuroimage 
22: 1035-1045. 

B 4.86 76 

3 Martinez-Montes E, Valdes-Sosa PA, 
Miwakeichi F, Goldman RI, Cohen 
MS, 2004. Concurrent EEG/fMRI 
analysis by multiway Partial Least 
Squares. Neuroimage 22: 1023-1034. 

C 4.86 74 

4 Valdes-Sosa PA, 2004. Spatio-
temporal autoregressive models 
defined over brain manifolds. 
Neuroinformatics 2: 239-250 

D 3 15 

5 Freiwald WA, Valdes P, Bosch , 
Biscay R, imenez C, Rodriguez LM, 
Rodriguez V, Kreiter AK, Singer W, 
1999. Testing non-linearity and 
directedness of interactions between 
neural groups in the macaque 
inferotemporal cortex.Journal of 
Neuroscience Methods 94: 105-119. 

E 1.36 46 

6 Valdes-Sosa P, 1997. Quantitative 
electroencepholographic tomography. 
Electroencephalography and Clinical 
Neurophysiology 103: 19. 

F 2.4 4 
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Análisis integral del grupo de aportes 

En estos momentos resulta de crucial importancia desarrollar métodos para la 

determinación in vivo de las redes neurales que subyacen el funcionamiento 

normal cerebral y puedan describir sus alteraciones en patologías 

neuropsiquiatrías.   

Una línea de trabajo de la estadística contemporánea ha sido la determinación 

de relaciones de causalidad a partir de series cronológicas basado en la 

llamada “Causalidad de Granger”. Sin embargo, el impulso inicial a este tipo de 

trabajo lo fue la econometría (trabajo por el cual obtuvo el premio Nobel  en el 

año 2003 C. W. Granger).   

Desde muy temprano nuestro grupo aplicó estos métodos a registros de la 

actividad eléctrica cerebral. Sin embargo,  había dos escollos fundamentales a 

vencer para su real aplicación al estudio del cerebro:                                                      

1. Los métodos desarrollados hasta el momento solo permitían el análisis 

de un número muy limitado de series cronológicas, de 2 a 5 a lo sumo; lo cual 

hacía muy dudoso su uso en el estudio de las Neuroimágenes,  en donde son 

frecuentes decenas o centeneras de miles de series cronológicas, una por cada 

voxel medido. 

2. No se tomaban en cuenta las relaciones espaciales existentes entre las 

series cronológicas, que en el caso del cerebro, se registran sobre una 

variedad que es un conjunto de contornes suaves sobre el cual se puede 

establecer un sistema de coordenadas geográficas. 
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El trabajo presentado resolvió los dos problemas mediante el uso de la 

regresión bayesiana en su formulación de regresión multivariada penalizada. A 

partir de este trabajo, en la literatura internacional,  se ha iniciado una línea de 

publicaciones en los dos campos afines de neuroinformática y bioinformática. 

Valoración del impacto de estos aportes: 

Científico 

El cuerpo de trabajo presentado ha logrado un impacto que puede medirse 

objetivamente por un total de 259 citas. El índice h de este trabajo es de 5 

(eliminando las autocitas). Ha sido objeto de 4 conferencias invitadas en los 

Talleres de Conectividad Cerebral. Se creó una revista especializada de este 

tema del cual es editor el optante. Ha sido objeto de dos conferencias invitadas 

de los congresos mundiales de Mapeo Cerebral Humano (4,000 participantes).                                        

 Asimismo originó la invitación a editar un número especial de la revista 

“Philosophical Transactions of the Royal Society” en el cual apareció uno de los 

artículos de la tabla J  

Debe mencionarse que ha surgido una metodología aparentemente distinta 

para medir la conectividad funcional: la Modelación Causal Dinámica de Karl 

Friston, miembro de la Royal Society  y una de las figuras más prestigiosas del 

Mapeo Cerebral Humano.   

El  artículo 1 de la Tabla II  describe una comparación experimental de la 

metodología de Granger y del DCM. Ello motivó un comentario muy crítico de 

métodos de Granger en el artículo 2 de la Tabla II, escrito por Friston.  
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A sugerencia del optante, la revista Neuroimage publicó los artículos 3-9 de la 

tabla II como parte de un “Comments and Commentary” que desde el año 2009 

han generado 121 citas para un índice h de 6. Esta serie polémica se resume 

con un artículo conjunto del optante (como primer autor) y de Friston que acaba 

de ser publicado en que se sintetizan ambos enfoques. Anexo G. 

Por el interés despertado por esta polémica, una propuesta del optante fue 

seleccionada  como uno de los tres simposios centrales del congreso mundial 

de mapeo cerebral del 2011. El comité organizador informó que esta iniciativa 

logró el mayor puntaje de un concurso internacional de 37 iniciativas y al que  

asistieron 2000 oyentes. 

                                                

Tabla II 

 Articulo Anexos Total 
de 
citas 

1 David, Olivier. (2009). fMRI connectivity, 
meaning and empiricism Comments on: 
Roebroeck et al. The identification of 
interacting networks in the brain using fMRI: 
Model selection, causality and 
deconvolution. NeuroImage, 1-4. Elsevier 
Inc. doi: 10.1016/.neuroimage.2009.09.073 

- 1 

2 Roebroeck, Alard, Formisano, Elia, & 
Goebel, Rainer. (2009a). Reply to Friston 
and David fMRI : Model selection , causality 
and deconvolution. NeuroImage. Elsevier 
Inc. doi: 10.1016/.neuroimage.2009.10.077 

- 4 

3 Marinazzo, D., Liao, W., Chen, H., 
&Stramaglia, S. (2010). Nonlinear 
connectivity by Granger 
causality.NeuroImage. Elsevier Inc. doi: 
10.1016/.neuroimage.2010.01.099 

- 6 

4 Friston, K. (2009b). Dynamic causal 
modeling and Granger causality Comments 
on: The identification of interacting networks 

- 7 
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in the brain using fMRI: Model selection, 
causality and deconvolution. NeuroImage, 
2007-2009. Elsevier Inc. doi: 
10.1016/.neuroimage.2009.09.031 

5 Daunizeau, ., David, O, & Stephan, K. E. 
(2009). Dynamic causal modelling: A critical 
review of the biophysical and statistical 
foundations. NeuroImage, 1-11. Elsevier 
Inc. doi: 10.1016/.neuroimage.2009.11.062 

- 8 

6 Bressler, S. L., & Seth, A. K. (2010). 
Wiener-Granger Causality: A well 
established methodology. NeuroImage, 
7.doi: 10.1016/.neuroimage.2010.02.059 

- 9 

7 Roebroeck, Alard, Formisano, Elia, & 
Goebel, Rainer. (2009b). The identification 
of interacting networks in the brain using 
fMRI: Model selection, causality and 
deconvolution. NeuroImage. Elsevier Inc. 
doi: 10.1016/.neuroimage 

- 13 

8 David, Olivier, Guillemain, I., Saillet, S., 
Reyt, S., Deransart, C., Segebarth, C., et al. 
(2008).Identifying neural drivers with 
functional MRI: an electrophysiological 
validation.PLoS biology, 6(12), 2683-97.doi: 
10.1371/ournal.pbio.0060315 

- 34 

9 Friston, K. (2009a). Causal modelling and 
brain connectivity in functional magnetic 
resonance imaging.PLoS biology, 7(2), 
e33.doi: 10.1371/ournal.pbio.1000033 

- 39 

10 Valdes-Sosa, P.A., Roebroeck A., 
Daunizeau J., Friston K., (2011) Effective 
connectivity; influence, causality and 
biophysical modelling, Neuroimage 

G  

  

Formación de Personal 

El trabajo enumerado es parte de la línea de trabajo de Neuroinformática que  

se ejecuta en  el Centro de Neurociencias de Cuba. Esta especialidad  fue 

creada en Cuba por el optante, al cual se le reconoce como uno de los 

contribuyentes a su creación 
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La tesis tutoreadas por el optante más directamente relacionados con el tema  

del trabajo son: 

• Doctor en Ciencias Estadísticas y Postdoctorado de Fumikazu 

Miwakeichi (entonces en el Instituto de Estadística Matemática y el Instituto 

RIKEN de Japón). 

• Doctores en Ciencias Físicas Eduardo  Martinez Mont Lester Melie 

Garcia. 

• Dr. En Ciencias Matemáticas Jose Miguel Sánchez Bornot. 

• Entrenamiento de los Investigadores  Agustin Lage Castellanos  y 

Mayrim Hernandez Vega. 

 

El trabajo ha recibido 2 premios de la Academia de Ciencias de Cuba, los 

cuales recibieron  la distinción especial del Ministro del CITMA. 
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Traducción al Español de la Introducción de: 

La Causalidad de Granger sobre Variedades Espaciales: Aplicaciones a 

las Neuroimágenes 

 

Pedro A. Valdés-Sosa, Jose Miguel Bornot-Sánchez, Mayrim Vega-Hernández 

Lester Melie-García, Agustin Lage-Castellanos, and Erick Canales-Rodríguez 

Departamento de Neuroinformática 

Centro de Neurociencias de Cuba, Ciudad Habana, Cuba 

 

Palabras claves: Causalidad espacial de Granger, EEG, fMRI, Conectividad 

cerebral efectiva. 

 

La elaboración de métodos para inferir la conectividad  efectiva  y funcional de 

las diferentes regiones del cerebro es actualmente un tema  importante para la 

esfera de las neuroimágenes [21]. La tarea es determinar los patrones 

cambiantes de las influencias  causales  que  las diferentes estructuras 

neuronales ejercen entre sí. Esta tarea  se debe llevar a cabo a través del 

análisis de datos de las imágenes dinámicas del cerebro. Este tipo de datos 

incluye la distribución de fuentes  de EEG / MEG, los registros ópticos [65]* y 

resonancia magnética funcional [36], que son, desde un punto de vista 

estadístico, conjuntos de datos espaciotemporales [48] [73]- es decir,  series de 

tiempo mostrada de una variedad subyacente continua Ω de puntos  

                                              

espaciales. El uso de los modelos multivariados autoregresivos (en particular 

los lineales) para las series de tiempo vectoriales, ha demostrado ser una 

herramienta esencial e informativa para las ciencias aplicadas. Dentro de este 



14 
 

marco de trabajo, Granger [33] formuló una definición  de la causalidad entre 

las series de tiempo, que ha sido aplicada extesamente en muchos campos, 

sobre todo en el de las neurociencias [3] [56] 

 

Sin embargo, es importante señalar que el trabajo en este campo se ha 

limitado a series de tiempo vectoriales, en los que la dimensión p es muy 

pequeña [64] [7]-incluso si, como es habitual en las aplicaciones reales, el 

número N de muestras de tiempo recogidas es grande. Como señaló Granger, 

su definición  de causalidad sería válida sólo si todas las variables relevantes 

se incluyeran en el análisis, una tarea muy compleja,  lo cual es comprendido 

perfectamente ya que ellos estudian el cerebro, que es el sistema complejo por 

excelencia. Por ello, hemos centrado nuestra atención en los modelos 

autoregresivos multivariados (MAR, por sus siglas en inglés) definidos sobre 

variedades espaciales (un ejemplo particular de lo cual es el cerebro) y en 

como manejar, el problema de series de tiempo muestreadas densamente (de 

alta dimensión, altamente correlacionadas) que surgen a partir de la 

discretización en voxels de un continuo espacial subyacente [68]. 

Como un ejemplo concreto, el cual se utilizará en todo el trabajo, se considera 

la unión de las  series de tiempo concurrentes del EEG y el fMRI para analizar  
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el origen de los ritmos cerebrales en reposo [31] [52] [55]. El paradigma de la 

adquisición se describe más detalladamente en la Sección 8. Patrones 

estructurados de las correlaciones se han encontrado entre los componentes 

espectrales  variables en el tiempo en diferentes bandas de  EEG y en  la señal 

dependiente del nivel de oxígeno en sangre (BOLD, por sus siglas en inglés)  

localizadas en diferentes voxels. Estos patrones revelan la presencia  de 

sistemas anatómicos  de amplia distribución aparentemente involucrados en la 

generación de estas oscilaciones (véanse las figuras 1-5). Aquí N = 108, el 

número de series de tiempo del  EEG es sólo 16, pero el número de series de 

tiempo del fMRI es 12.640! El modelo  MAR frecuentemente utilizado no puede 

ser ajustado para esta cantidad de datos. 

El enfoque utilizado en este trabajo sigue la estrategia de Análisis de Datos 

Funcionales [61]. Las cantidades de interés en los MAR espaciales 

(coeficientes autoregresivos) se estiman  sujetos a limitaciones que tienen 

sentido anatómico y fisiológico. Estas, no sólo permiten la inferencia de datos 

de la densidad de la muestra, sino que también encajan muy bien con los 

métodos abreviados de cálculo que hacen factible los procedimientos 

propuestos. En los modelos MAR clásicos, la causalidad de Granger de un 

conjunto de series de tiempo sobre otro conjunto es calculada a través de 

medidas de influencia [24] [25]. En el caso lineal, estas medidas de influencia 

son por lo general tests multivariados de la hipótesis, donde ciertos coeficientes 

de regresión son iguales a cero. En el MAR espacial (SMAR) aplicado en 

nuestros experimentos extendemos este concepto al de un campo de 

influencia.  
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Para las Neuroimágenes funcionales, estos son mapas topográficos de la 

influencia de un sitio del cerebro (voxel) sobre el resto. Por ejemplo, en el 

experimento de EEG- fMRI realizado en paralelo que acabamos de mencionar,  

sería de  interés  conocer que influencia podría tener un sitio en la corteza 

visual (Figura 1) sobre el resto del cerebro.  

 

En este tipo de situación los tests multivariados clásicos son difíciles de realizar 

o no funcionan. Por lo que se propone aplicar el enfoque univariado masivo que 

es el concepto del  Mapeo Paramétrico Estadístico (SPM, Statistical Parametric 

Mapping) [74].  El SPM calcula en esencial un estadígrafo (uni o multivariado) 

en cada voxel de una imagen del cerebro y luego determina cuales son las 

regiones significativamente activadas  por medio de procedimientos que 

controlan el error de tipo I. Esto último se logra ya sea a través del uso de la 

Teoría de los Campos Aleatorios [74], a través de los métodos de remuestreo 

[11], o del uso de la tasa de Descubrimiento Falso (FDR, por sus siglas en 

inglés) [13]. 
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Figura 1: Imagen de resonancia magnética como un ejemplo de una superficie 

del cerebro. EPI- imagen de resonancia magnética del cerebro de un sujeto a 

partir de [30]. La sección de RM está a un nivel que traspasa la corteza visual 

primaria o estriada (VC). La flecha marca el voxel en la corteza visual primaria 

para los que la respuesta BOLD durante el ritmo alfa muestra la correlación 

más alta con el poder en esa banda. 

 

Proponemos evaluar una extensión espacial de la causalidad de Granger a 

través de un SPM de los campos de influencia. En efecto, estamos interesados 

en la detección de regiones significativas en el conjunto producto cartesiano Ω 

x Ω. En  esta situación una alternativa al uso de técnicas multivariadas 

ordinarias de regresión es lograr la solución de un gigantesco problema de 

regresión multivariado e intentar las pruebas asociadas de los coeficientes de 

regresión. Para ser capaz de hacer esto, se deberá trabajar con la regresión 

sobre la base de la penalización en el espíritu del  Análisis de Datos 

Funcionales (FDA, por sus siglas en inglés) [61]. Este enfoque reduce 

drásticamente el número de conexiones "efectivas"  a  determinar. Este fue el 

enfoque adoptado al [69] introducir una variante del Análisis de Datos 

Funcionales  de los modelos MAR que impuso suavidad espacial sobre el 

campo de  influencia.  La reducción masiva de datos se logró por medio de la 

descomposición en valores singulares  y este trabajo demostró la factibilidad de 

trabajar en la situación p> N. Un artículo posterior [70] también utiliza la 

regresión penalizada, en este caso se introducen los Modelos Multivariados 
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Autoregresivos Ralos (Sparse).  Este último se puede estimar a través de un 

proceso de dos etapas que  implican a) regresión penalizada y b) desechar las 

conexiones poco probables por medio de la tasa local de descubrimiento falso  

desarrollada por Efron. Se realizaron amplias simulaciones en redes corticales 

ideakizadas con una topología de mundo  pequeño y una dinámica estable. 

Esto muestra que la eficiencia en la detección de conexiones del procedimiento 

propuesto es bastante alta. Por otra parte, la raleza o la independencia 

condicional no tiene que ser especificada  a priori, sino que  se descubre 

automáticamente mediante un proceso iterativo. En resumen, utilizamos el 

hecho de que el cerebro está conectado ralamente como parte de la solución, 

en vez de tratarlo como un problema de especificación. Este capítulo une los 

dos enfoques- el de la suavidad y la raleza espacial en un marco mucho más 

general. 
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1 Introduction

Devising methods for inferring the e¤ective and functional connectivity of dif-

ferent brain regions is currently a major concern in Neuroimaging [21]. The task

is to determine the changing patterns of causal in�uences that di¤erent neural

structures exert on each other. This is to be done by the analysis of dynamical

brain imaging data. This type of data include EEG/MEG source distributions,

optical recordings [65] and fMRI [36] which are, from the statistical point of

view, spatiotemporal data sets [48][73] � that is time series sampled from an

underlying continuous manifold 
 of spatial points. Multivariate autoregres-

sive models (in particular linear ones) for vector time series have proven to be

1



an essential and informative tool for the applied sciences. Within this frame-

work Granger [33] formulated a de�nition of causality between time series that

has been pursued extensively in many �elds and especially in the neurosciences

[3][56].

It is striking though, that work in this �eld has been limited to vector valued

time series in which the dimension p is very small [64][7] �even if, as usual in

real applications, the number N of time samples gathered is large. As Granger

himself pointed out, his de�nition of causality would be valid only if all relevant

variables would be included in the analysis, a formidable task that is readily

appreciated by neuroscientists since they study the brain, which is the complex

system by excellence . We have therefore directed our attention to multivariate

autoregressive models (MAR) de�ned over spatial manifolds (a particular ex-

ample of which is the brain) and to deal with the issue of densely sampled (high

dimensional, highly correlated) time series that arise from a discretization of an

underlying spatial continuum into voxels [68].

As an concrete example (whish will be used throughout the paper), con-

sider the concurrent EEG and fMRI time series gathered in order to analyze

the origin of resting brain rhythms [31][52][55]. The acquisition paradigm is

described more fully in Section 8. Structured patterns of correlations have been

found between time-varying spectral components in di¤erent EEG bands and

the BOLD signal at di¤erent voxels. These reveal widely distributed anatomical

systems apparently involved in the generation of these oscillations (see Figures

1-5). Here N = 108, the number of EEG time series is only 16, but the number
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of fMRI time series is 12,640! Usual MAR model can not be �t to this amount

of data .

The approach explored in this paper follows the strategy of Functional Data

Analysis [61]. Quantities of interest in the spatial MAR (autoregressive coef-

�cients) are estimated subject to constraints that make anatomical and phys-

iological sense. They not only allow inference for densely sampled data, but

also dovetail nicely with computational shortcuts that make the proposed pro-

cedures feasible. In classical MAR models, Granger causality of one set of time

series on another set is quanti�ed by means of in�uence measures [24][25]. In

the linear case, these in�uence measures are usually multivariate tests that cer-

tain regression coe¢ cients are zero. In our spatial MAR (sMAR) we extend

this concept to that of an in�uence �eld. For functional Neuroimages, these

are topographic maps of the in�uence of one brain site (voxel) on rest of the

brain. For example in the concurrent EEG-fMRI experiment just mentioned

one is interested to know what in�uence a site in the visual cortex (Figure 1)

might have on all the rest of the brain.

For this type of situation classical multivariate testing is di¢ cult or fails. We

propose rather to apply the massive univariate approach that is at the heart of

Statistical Parametric Mapping (SPM) [74]. SPM essentially calculates a (uni

or multivariate) statistic at each voxel of a brain image and then determines

signi�cantly activated regions by means of procedures that control the type I

error. The latter is achieved either by the use of Random Field Theory [74],

resampling methods [11], or the use of the False Discovery rate (FDR) [13].
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Figure 1: MRI image as an example of a brain manifold. EPI MRI image of the
brain of a subject from [30]. The MRI section is at a level that passes through
the striate or primary visual cortex (VC). The arrow marks the voxel in VC for
which the BOLD response during alpha rhythm shows the highest correlation
with the power in that band.

We propose to evaluate a spatial extension of Granger causality by a SPM of

in�uence �elds. In e¤ect, we are interested in detecting signi�cant regions in

the Cartesian product set 
�
. An alternative to using ordinary multivariate

regression techniques for this situation is to attempt a huge multivariate regres-

sion problem and associated testing of the regression coe¢ cients. To be able to

do so we shall work with regression based on penalization in the spirit of Func-

tional Data Analysis (FDA) [61]. This approach drastically reduce the number

of "e¤ective" connections to be determined. This was the approach taken in [69]

by introducing a FDA variant of MAR modeling that imposed spatial smooth-

ness on the in�uence �eld. Massive data reduction was achieved by means of the

singular value decomposition and this paper showed the feasibility of working

in the p > N situation. A subsequent paper [70] also used penalized regres-
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sion, in this case introducing Sparse Multivariate Autoregressive models. The

latter can be estimated in a two stage process involving a) penalized regression

and b) pruning of unlikely connections by means of the local false discovery

rate developed by Efron. Extensive simulations were performed with idealized

cortical networks having small world topologies and stable dynamics. These

show that the detection e¢ ciency of connections of the proposed procedure is

quite high. Furthermore, the sparsity or conditional independence did not have

be speci�ed a priori but is disclosed automatically by an iterative process. In

short, we use the fact that the brain is sparsely connected as part of the so-

lution, as opposed to treating as a speci�cation problem. This chapter uni�es

the two approaches�spatial smoothness and sparseness in a much more general

framework.

2 The continuous spatial Multivariate Autore-

gressive model and its discretization

We shall be dealing with the following spatial Multivariate Autoregressive (sMAR)

model de�ned in discrete time:

y (s; t) =
rX

k=1

ZZZ



ak (s; u) y (u; t� k) du+ e (s; t) (1)

where y(s; t) is the variable of interest (for example, in our case, either func-

tional Magnetic Resonance Image BOLD, and optical image, EEG, or MEG).
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It is a stochastic process which is indexed by the continuous spatial position

variable s and time t = 1; :::; N . We posit an innovation process that is also

a function of space and time. Note that the integration is over the volumet-

ric set 
. Of central interest here are the functions ak (s; u) that specify the

in�uence of site u on site s at after k time delays. This is actually a function

ak : 
 � 
 ! < which will specify the in�uences produced by small neighbor-

hoods of each point s of the manifold �(s) � 
; which will be ak (s; u) �(s).

We now introduce 3 de�nitions of spatial in�uence measures:

� A point in�uence measure Is!u is the simple test H0 : a (s; u) = 0 for

given s; u 2 
 .

� An in�uence �eld Is!
 is a multiple test H0 : a (s; u) = 0 for a given

s 2 
 and all u 2 
 .

� An in�uence space Is!
 is a multiple test H0 : a (s; u) = 0 for all s; u 2 


.

These concepts are illustrated in Figure 2.

Of these, point in�uence measures have been studied to date and recently

we have addressed those for �elds. The exploration of the entire in�uence space

will be touched upon in the �nal section.

Now suppose that we sample the y (s; t) centering our discretization at voxels

s = fs1; : : : ; si; : : : spjsi 2 
g : In this case, the data at time t will be represented

by a vector:
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Figure 2: Classical and spatial in�uence measures. On the left are the set
of nodes and how activity is propagated by a linear autoregressive model for
successive time instants. Arrows indicate nonzero autoregressive coe¢ cients
at di¤erent time lags. On the right are the corresponding causality graphs
indicating nonzero point in�uence measures Ix!y. Top: causality analysis of a
time series graph with only four nodes. In this hypothetical example only two
time lags are relevant. Note that each node depends on its own past through
a order two autoregressive model. Here we say y in�uences z at lag 1 and x
in�uences z at lag 2. Bottom: spatial extension of the concept of in�uence
measure. The manifold 
 in this case is a line segment. Also here only two time
lags are relevant. Here each point also depends on its past through an order
two autoregressive model. Additionally, we also have nonzero point in�uence
measures of x on y with lag 1, point z in�uences the whole of set P at lag 2,
and set M in�uences set N at lag 1
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yt =

2666666666666664

y1;t

...

yi;t

...

yp;t

3777777777777775
p�1

, where i = 1; : : : ; p indexes the voxels with yi;t =
RRR
�(si)

y (u; t) du. We shall as-

sume that the neighborhood of the si is su¢ ciently large to avoid spatial aliasing

problems. The discretized version of 1 leads to the Multivariate Autoregressive

Model (MAR) for the yt :

yt =

rX
k=1

Akyt�k + et (2)

where the continuous function ak(s; s0) transforms to a matrix Ak with dimen-

sions p � p and with elements aki;j =
R
���
R

�(si)��(ui)
ak
�
s0i; u

0
j

�
ds0 du0. In what

follows we assume et � N (0;�) ; but of course this assumption may be relaxed.

Note that the larger the number of sampling points the better the representation

so we deal with a case in which ideally p!1

De�neB = [A1; : : : ;Ar]
T , Z = [yr+1; : : : ;yN ]

T , andX =

2666666666666664

yTr ::: yT1

:

:

:

:::

:

:

:

yTN�1 ::: yTN�r

3777777777777775
with dimensions p r � p, N � r � p, and N � r � p:r respectively. we can now
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recast the original sMAR 1 as a multivariate regression model:

Z = XB+E (3)

where E = [er+1; : : : ; eN ]
T .Some additional notation will be useful. We shall

denote the vectorized version of B , � = vec (B) formed by stacking the columns

of B; �i. Note that �i measures the in�uence of a voxel i on the rest of the

brain for all time lags and, in turn, comprises the vectors of autoregressive

coe¢ cients for each time lag: �i =

26666664
�i1

� � �

�ir

37777775.Thus the linear e¤ect of voxel i at
lag k on voxel j is measured by the coe¢ cient �ij;k .

3 Testing for spatial Granger Causality

As noted before, MAR modeling has been widely applied in the neurosciences

[1] [47] [36] for the analysis of causality. Though some doubt that causal analysis

is possible at all [40], early work with Structural Equation Modeling [53] did

face up to the issue of inferring directional in�uences and was �rmly grounded in

modern statistical techniques [58] via graphical models. These initial studies [53]

in Neuroimaging were based on non dynamical PET data and ignored temporal

information. The concept of Granger Causality [33][41][26]) does make use

of temporal information in order to establish a measure of directed in�uence.

Granger Causality Ix!y of the time series x on y is demonstrated when one can
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reject the null hypothesis of y not being predicted by the past of x [2][37][3].

Recent work[4] have combined the notion of Granger Causality analysis with

that of causality analysis via graphical models [59] . In this view, a system

modeled by a MAR is a network in which each node is a time series. These ideas

generalize to the more general linear sMAR in Equation 2 introduced above, by

noting that the coe¢ cients aki;j measure the in�uence that time series j exerts

on time series i after k time instants. Knowing that aki;j is non-zero is equivalent

to establishing e¤ective connectivity [21] and tests for this hypothesis have been

proposed as in�uence measures [33]; [47][27][37][69][15]. From the graphical

points of view the question is: does an edge exists between the corresponding

nodes? The maximum likelihood (ML) estimation of equation 2, or equivalently

equation 3 can be obtained by standard methods [35][48]:

B̂ = argmin
B

kZ�XBk2 (4)

where for any matrixX, kXk2 = tr
�
XT X

�
, is the Frobenius norm. This results

in the well known explicit solution, the OLS estimator:

B̂ = (XTX)�1XTZ (5)

It should be noted that the unrestricted ML estimator of the regression coe¢ -

cients does not depend on the spatial covariance matrix of the innovations [35].

One can therefore carry out separate regression analyses for each node. In other

words, it is possible to estimate separately each column
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�i of B:

�̂
i
= (XTX)�1XT zi (6)

for i = 1 : : : p;where zi is the i-th column of Z. Consider that we obtain the

usual t statistic for each regression coe¢ cient:

tik;j =
�̂
i

k;j

SE
�
�̂
i

k;j

� (7)

where SE is the usual standard error of the regression coe¢ cient. Then we can

use SPM type procedures to detect which voxels are in�uenced by voxel i at lag

k. This suggests the one possible speci�c de�nition of in�uence �eld:

Ik;i!
 =
�
tik;j
	
1�i�p (8)

If, as is usual, we wish to collapse over the lags, then we use instead of the or-

dinary t statistic we can use the Hotelling�s T 2 statistic. Unfortunately there is

a problem with this approach when dealing with Neuroimaging data: the total

number of parameters to be estimated for model 2 is g = r �p2+ (p
2 + p)

2
, which

becomes rapidly large for increasing p, a situation for which usual time-series

methods break down since the OLS estimator will not exist. In the next section

we shall review some attempts to cope with this problem by dimensionality re-

duction in order to apply classical causality analysis. In the following section we

shall explain our approach to address the full problem via variable penalization.
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4 Dimension reduction approaches to sMARmod-

els

4.1 ROI based causality analysis

One common approach is to pre-select a small group of sets of voxels or regions

of interest (ROI) on the basis of prior knowledge (for example known anatomical

structures) and to obtain an average time series over these volumes. In other

words the original manifold 
 is partitioned into sub-manifolds and the following

holds:


 =
GS
g=1


g

yROIg;t =
RRR

g

y (s; t) ds

(9)

Causality analysis may then be assayed by the methods described above since

now N > G. Recent example of this type of linear Granger causality analysis

for fMRI time series is [29][28]. As an example, a ROI analysis of the concurrent

EEG-fMRI times series is shown in Figure 2 (taken from). The fMRI time-series

are of length N = 109 for six ROI in the brain identi�ed by previously looking

at the correlation with the EEG alpha atom: visual cortex, thalamus, left and

right insulae and left and right somatosensory areas. The resulting causality

diagram clearly shows that electrophysiological activity is driving the BOLD

response in di¤erent brain structures, which is to be expected since the BOLD

response measured in fMRI experiments is secondary hemodynamic response to

neural activity. Thalamus and cortex have reciprocal relations and with other
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Figure 3: ROI Granger causality graphical model for concurrent EEG-fMRI
recording during alpha rhythm. The MRI from Figure 1 has been divided into
regions of interest (ROI) and a MAR model �tted to identify signi�cant in�u-
ences. The EEG node corresponds to the EEG PARAFAC � component power

time series as shown in Figures 3-4. The rest of the nodes are fMRI time

structures. These results in general are in agreement with previous studies of this

material showing the utility of this type of analysis. However, the ROI strategy

has the potential problem of the appearance of spurious in�uences induced by

the brain structures not included in the analysis. An additional problem is that

it is not always clear how to establish the partition (9).

4.2 Latent Variable based causality analysis

A di¤erent approach for dimensionality reduction is the use of latent variable

analysis (LVA). Essentially this involves creating linear or nonlinear combina-

tions of the original time series in an attempt to �nd series are in some sense
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the actual underlying "physiological components":

yLV Ac;t = f (yt) (10)

in which f is the transformation from the original time series to the desired

components for c = 1; � � � ; C. This approach has a long history in neuro-

science,di¤erent methods used being PCA [62][62][20]), ICA [46].

We now give a recent example of LVA which extracted by means of mul-

tilinear techniques and applied to the EEG-fMRI data described in [55]. The

multichannel EEG evolutionary spectrum S (f; t; d) is obtained from a channel

by channel wavelet transform, where ! is frequency, d is the derivation (chan-

nel) and t is time, Parallel Factor Analysis (PARAFAC) [52][55] decomposes

three-way data array S into the sum of �atoms�:

S (d; !; t) =
P
k

ak (d) bk (!) ck (t) + es (!; t; d) (11)

where the k�th atom is the trilinear product of loading vectors representing

spatial (ak), spectral (bk), and temporal (ck) �signatures�. This decomposition

is shown schematically in Figure 4. Two atoms were found � and � , identi�ed on

the basis of the frequency signature (Figure 5a) peaking at the known frequency

of these well known EEG rhythms. The spatial distribution of these components

both in the EEG and the fMRI were occipital and frontal for the � and �

atoms repectively (Color Plate 1). Perusal of the time signatures of these atoms

shows a strong in�uence of imposing either a resting condition or a mental
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Figure 4: Schematic representation of the PARAFAC model. The multichannel
EEG evolutionary spectrum S (d; !; t) is decomposed into the sum of �atoms�
where the k�th atom is the trilinear product of loading vectors representing
spatial (ak), spectral (bk), and temporal (ck) �signatures�

task on the subject (Figure 5b). Moreover, since only two time series were

involved, classical methods for measuring in�uences were applied easily yielding

the causality analysis shown in Figure 6. It is to be noted that assessment of the

model order for all fMRI time series models presented in this paper indicated

that only a �rst order model (r = 1) is required .

While consistent with known hypothesis about the brain, this type of analysis

only uses the instantaneous covariances to �t the model since time lags are

not usually included in the analysis. A more promising approach are methods

developed for geostatistics [48][51][73] in which time series methods are combine

with component extraction. The latter techniques, to our knowledge, have not

been applied in neuroscience. In any case extraction of components avoids the

issue of analyzing directly spatial Granger causality, a point to which we shall

now turn ou attention.
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Figure 5: Spectral and temporal signatures of the EEG PARAFAC atoms. On
the left the Spectral signatures bk (f) of the two atoms corresponding to fre-
quency peaks in the traditional � and � bands. The horizontal axis is frequency
! in Hz and the vertical axis is the normalized amplitude. right temporal
signatures, ck (t), of the � and � atoms.

Figure 6: In�uence measure analysis of the EEG-fMRI atoms. The external
variable imposition of a mental task was found to directly in�uence (negatively)
the activity of the � atom, which in turn in�uenced negatively the � atom
(Itask!� ,I�!� > 0 ).
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5 Penalized sMAR

5.1 General model

This section introduces a Bayesian sMAR that generalizes those proposed in

[69, Valdes-NI][70, Valdes-PTRS]. Consider once more the sMAR model:

Z = XB+E (12)

We now posit that the elements of � are sampled from an a priori that is

the product of several generalized multivariate normal densities:

� (�; (P1;�1) ; � � � ; (PM ;�M )) = C:
MQ
m=1

exp
�
�Pm

�
��1m �

��
(13)

where C is a normalizing constant, the �m are a priori covariance matrices

for the �: The MAP estimate that follows from the likelihood of 12 and the

prior 13 is:

B̂ = argmin
B

kZ�X Bk2� +
MP
m=1

Pm
�
��1m �

�
(14)

where for any matrix X kXk2� = tr
�
XT��1X

�
. Finally, Pm (w) for any vector

w is de�ned as: Pm (w) =
length(x)P

l=1

pm (jwl
j), and the functions pm (�) are

de�ned for � > 0 are appropriate penalty functions with the properties speci�ed

in [17]. Some examples are given in Table 1 as well as illustrated in Figure 8.

Thus, our model consists of M regularization constraints, each comprising
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a:

1. Covariance matrix used to enforce a priori spatial constraints on the au-

toregressive coe¢ cients; and a

2. Penalization function to enforce constraints on the magnitude of the vari-

ables and therefore carry out variable selection.

Name Abbreviation

LASSO L1

Smoothly Clipped Absolute Deviation SCAD

Hard thresholding HT

Ridge L2

Mixture of generalized Gaussians MIX

Normal-gamma NG

Normal-exponential-gamma NEG

Table 1. Examples of penalty functions
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Name notation inverse of matrix

Spherical In

266666666664

1 0 0

0 � � � 0

� � � � � � � � �

0 0 1

377777777775

1D gradient D1
n

2666666666666664

1 �1 0 � � � 0

0 1 �1 � � � 0

� � �

0 � � � 0 1 �1

0 � � � 0 0 1

3777777777777775
2 D gradient D2

nm

2664 In 
D1
m

D1
m 
 In

3775
2 D laplacian L2nm D1

n �D1
m

3D gradient D3
nmp

26666664
In 
 Im 
D1

p

In 
D1
m
Ip

D1
n 
 Im 
 Ip

37777775
3 D-laplacian �L3n;m;p �D1

m �D1
n �D1

p

Table 2. Examples of a priori covariance �m matrices de�ned in terms of

their inverses. These de�nitions are valid over rectangular domains in dimen-

sions from 1-3. For irregular domains (areas in an image where there is gray

matter for example) these matrices are masked a 0-1 indicator function for the

selected voxels.

The penalization pm functions that we have explored are summarized in Ta-
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ble 1 with their abbreviations. These abbreviations,together with the those for

the covariance matrices �1, allow the introduction of a notation for a particular

sMAR model based on the penalty function used. Thus
�
L1; Irp2

�
is an sMAR

model with a penalty that comprises only one term, the use of the l1 penalty

and a spherical covariance matrix. It should be noted hat the proposed MAP

14 includes as particular cases many currently used regularization schemes fre-

quently applied in isolation, some new combinations proposed in the literature,

as well as totally new proposals. Unfortunately in the penalized case it is not

possible in general to carry out separate regressions for each �i . For the sake

of simplicity, and to retain the possibility of independent estimation for each in-

�uence �eld, we have been assuming that � is diagonal, that is we assume that

the innovations are spatially independent. In the �nal section we shall discuss

avenues to avoid this restriction.

5.2 Achieving sparsity via variable selection

In a previous paper we proposed that attention be restricted to networks with

sparse connectivity. That this is a reasonable assumption that is justi�ed by

studies of the numerical characteristics of network connectivity in anatomical

brain databases [38][49][66])

Sparsity of causal explanations may be achieved by variable selection. Re-

searchers into causality [63][60] have explored the oldest of variable selection

techniques for regression� stepwise selection for the identi�cation of causal graphs.

This is the basis of popular algorithms such as PC embodied in programmes

20



such as TETRAD. These techniques have been used in graphical time-series

models [8]. Unfortunately these techniques do not work well for p >> N . A

considerable improvement may be achieved by stochastic search variable selec-

tion (SSVS) of George and McCulloch [23][22], which relies on Markov chain�

Monte Carlo (MCMC) exploration of possible sparse networks [9][45]. These

approaches, however, are computationally very intensive and not practical for

implementing a pipeline for Neuroimaging analysis.

An alternative to MCMC like methods is variable selection via penalized

regression models [17][18]) which uni�es nearly all variable selection techniques

into an easy-to implement iterative application of minimum norm or ridge re-

gression. These techniques have been shown to be useful for the identi�cation

of the topology of huge networks [50][54]. Penalized regression models were in-

troduced for the �rst time for the study of brain connectivity used in [70][69].

Consider the variant of the general model 14 with only one component (M = 1)

and a spherical covariance matrix. Some of the possible models are:

�
�
L2; Irp2

�
is the usual ridge regression model [39] or quadratic regulariza-

tion, � being the regularization parameter which determines the amount

of penalization enforced. Due to the possibility of e¢ cient computation

this is a widely applied form of regularization, recently applied for example

to analyze microarray data [72].

�
�
L1; Irp2

�
is, as mentioned above, the LASSO [14].

�
�
HT; Irp2

�
is the Hard Thresholding of regression coe¢ cients only ap-
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plicable in the p < N case.

�
�
SCAD; Irp2

�
[17] is a form of regression designed to avoid bias for larger

coe¢ cients.

�
�
MIX; Irp2

�
uses the penalty function � ln(p0fp0(�) + (1� p0)fp1(�))

where the mixture density are univariate generalized gaussians. This is

a regression model designed to produce sparsity and implements a non

MCMC variant of the "spike and slab" models for variable selection, the

best known being the SSVS method of George & McCulloch [23] .

We introduce in this chapter a further generalization of the variable selection

penalties previously used. As pointed out in [34] it has been shown that most of

the mixture priors previously discussed are particular instances of scale mixtures

of normal distributions [71] that embody a high prior probability of the regres-

sion coe¢ cients in the proximity of zero. These authors proposed a natural

class of prior distribution that bridges the gap between classical normal-Je¤reys

priors, passing throughout ridge regression down to the double exponential dis-

tribution used in the LASSO. Some particular mixture distribution of interest

are shown in Table 3. We single out for mention the following regression models

used for the �rst time to study brain connectivity.:

�
�
NG; Irp2

�
, uses as a penalty the minus log of the normal-gamma (NG)

distribution is often called as variance-gamma distribution, has the mar-

ginal distribution: p(�j) =
1p

�2��1=2
�+1=2�(�)

���j��K��1=2
����j�� =��, where

Kv (a) is the modi�ed Bessel function of the third kind.
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�
�
NEG; Irp2

�
is based on the normal-exponential-gamma (NEG) can be ex-

pressed as p(�j) =
�2�p
�

� (�+ 1=2) exp

�
�2j
4
2

�
D�2(�+1=2)

����j�� =�� ; where
Dv (a) is the parabolic cylinder function, the parameters 
 and � control

the scale and the heaviness of the tail respectively.

distribution density

Normal-Je¤reys: g (�) / 1=�

t distribution
g (�) = IG

�
�
2 ;


2�
2

�
�; 
 > 0

Mean-zero double exponential
g (�) = Ga

�
�j�; 1

2
2

�
� = 1

Normal-gamma (NG)
g (�) = Ga

�
�j�; 1

2
2

�
� > 0; 
 <1

Normal-exponential-gamma (NEG)
g (�) = �


2

�
1 + �=
2

��(�+1)
� > 0; 
 <1

Table 3. Mixing distribution of interest represented in the scale mixture

form, where IG (a; b) and Ga (a; b) are the inverse gamma and the gamma with

shape a and natural parameter b:

5.3 Achieving spatial smoothness

The other constraint that makes sense is that of spatial smoothness of in�u-

ence �elds. Consider Figure 8(left) which depicts the in�uence of a given brain

structure on three others: two that are close to each other in the same hemi-

sphere and another that is further away in another hemisphere. It is a priori
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more likely that the in�uences from the given voxel on the two closer voxels be

more similar than the in�uence on the distant voxel. This can be quanti�ed

by requiring
rP

k=1

RRR



���@ak(s;u)@s

���2 du be small, the the distribution of in�uences
to targets be smooth. Alternatively, one may require that the distribution of

sources in�uences to a single target as in Figure 8(right) be smooth by impos-

ing that
rP

k=1

RRR



���@ak(s;u)@u

���2 du be small. These de�nitions are actually for the
L2 penalization (and therefore specify Gaussian �elds as a priori distributions).

The discrete version of this is set up by specifying the matrix operators de�ned

in Table 3. Additionally, one may modify the quadratic norm by applying the

di¤erent penalties described in Table 1. One may also conceive combinations

of the two conditions� smoothness of target or of source in�uences all these

conditions following from the choice of appropriate roughness penalty or, equiv-

alently, the a priori covariance matrix. Imposing smoothness on the in�uence

�elds involves imposing conditions on each column of B (�i) separately. It

would be possible to impose similar conditions on the rows of B, that is on the

map of sources of a given target, but this is not computationally feasible at the

moment for large p.

We shall now mention some one component sMAR models that impose dif-

ferent types of smoothness:

�
�
L1;Lrp2

�
this is the data "Fusion" model mentioned in [67], now applied

to sMAR.

�
�
L2;Lrp2

�
is a spline regression model in which the spatial laplacian of the

estimated coe¢ cients are to be minimized. Popularized for the solution
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Figure 7: Spatial Constraints

25



of EEG inverse problems as "LORETA" [57] , this model was used for

the �st time to study fMRI time-series connectivity in one of our previous

paper [69].

We wish to emphasize that penalizing with roughness penalties is equivalent

to penalizing a spatial Fourier transform of the coe¢ cients to be estimated.

5.4 Achieving sparseness and smoothness

There is no reason to restrict the number of penalty/smoothness constraints

imposed. In fact, recent work in statistical learning has advanced the use of

models which are easily recognized in the framework of our general model. For

example:

�
�
L1; Irp2

� �
L2; Irp2

�
can be recognized as the recently introduced "Elastic

Net" [75] regression technique applied to sMAR. The elastic net has been

shown to improve on the variable selection properties of the LASSO when

p >> N . Simulations have shown that when there are sets of correlated

variables LASSO picks just one variable from each set. In contrast, the

elastic net picks all of the members of the set giving them similar weights.

When applied to sMAR this would produce a "patchy" in�uence �eld.

One would hope that these patches correspond to coherent sets of neurons

that act together in in�uencing other brain structures.

�
�
L1; Irp2

� �
L1;Drp2

�
can be recognized as the recently introduced "LASSO-

Fusion" [67] regression technique applied to sMAR. It is claimed that this
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also selects patches of related variables and outperforms the LASSO when

p >> N .

Both these procedures were previously developed in the context of particu-

lar algorithms: quadratic programming and LARS for LASSO-Fusion and the

elastic net respectively. However, we have that it is possible even for huge

problems(see next section) to work with any number of combinations of penal-

ties/covariance matrices. We have therefore tried out the following new models:

�
�
L2; Irp2

� �
L2;Drp2

�
which we call "Ridge-Fusion" in analogy to LASSO-

Fusion.

�
�
L1; Irp2

� �
L1;Lrp2

� �
L2; Irp2

� �
L2;Lrp2

�
which can be seen either as: a)

a combination of the LASSO-Fusion and Ridge-Fusion or, alternatively as

b) a combination of the Elastic NET applied with LORETA both for the

L1 and L2 norm.

From our previous comment at the end of the last section it is obvious that

these attempts to combine norms are equivalent to penalizing/selecting variables

from the original coe¢ cient domain as well as from the spatial frequency domain.

.

6 Estimation via the MM algorithm

For implementation of algorithms for the estimation of the model 14 , advantage

was taken of the recent demonstration [17][18][42] that estimation of any of
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many penalized regression for the in�uence �eld of voxel i can be carried out by

iterative application of ridge regression:

�̂
i

k+1 = (X
TX+D(�̂

i

k+1))
�1 XT zi (15)

where k = 1; � � � ; Niter, with Niter the number of iterations and D(�̂
i

k+1) , a

diagonal matrix is de�ned by

D(�i) =
MX
m=1

diag(p
0

m(
��wil ��)= ��wil ��) (16)

for l = 1; � � � ; rp2, where w=��1m �i and p
0

� is the derivative of the penalty

function being evaluated. the derivatives p
0

m for di¤erent penalty functions are

provided in Table 4
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Type Derivatives

L1 p
0

�(�) = �L1 �

SCAD
p
0

�(�) = �SCAD

n
I(� 6 �) + (a���)

a�1 I(� > �)
o

for some a > 2

HT p
0

�(�) = �2(� � �HT )

L2 p
0

�(�) = 2�L2 �

MIX

p
0

�(�) = ��Mix

h
pof

0
p0
(�)+p1f

0
p1
(�)

pofp0 (�)+p1fp1 (�)

i
where fp(�) =

p
1� 1

p

2�p�( 1p )
exp

�
� 1
p
jx�x0jp
�p

�
and �(�) denotes the Gamma function

NG
p
0

�(�) =
1


NG

K��3=2

�
�



NG

�
K��1=2

�
�


NG

�
where Kv(z) is the modi�ed Bessel function of the third kind

NEG
p
0

�(�) =
�NG+1=2

NG

D�2(�+1)

�
�


NG

�
D�2(�+1=2)

�
�


NG

�
where Dv(z) is the parabolic cylinder function

Table 4. p
0

�(�), derivatives of penalty functions for � > 0

The reason that this algorithm works may be inferred from Figure 8. At

each step of the iterative process, the regression coe¢ cients of each node with

all others are weighted according to their current size and the penalty function

chosen. Many coe¢ cients are successively down-weighted and ultimately set to

zero� e¤ectively carrying out variable selection in the case of the LASSO, HT,

SCAD, MIX, and NG penalization. It must be emphasized that the number of

variables set to zero in any of the methods described will depend on the value

of the regularization parameter, with higher values selecting fewer variables. In
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Figure 8: Plot of the penalization functions used to implement sparse and spa-
tially constrained regression techniques. The meaning of the abbreviations is
summarized in Table 1.

this paper, the value of the tuning parameters was selected to minimize the

generalized crossvalidation criterion (GCV).

The speci�c implementation of penalized regression used in this work is

that of the maximization�minorization (MM) algorithm [42][43][44] which ex-

ploits an optimization technique that extends the central idea of EM algorithms

and Variational Bayes techniques to situations not necessarily involving miss-

ing data or even maximum likelihood estimation. The MM algorithm retains

virtues of the Newton-Raphson algorithm. It is numerically stable and is never

forced to delete a covariate permanently in the process of iteration. The gen-

eral convergence results known for MM algorithms imply among other things

that the newly proposed algorithm converges correctly to the maximizer of the

perturbed penalized likelihood whenever this maximizer is the unique local max-
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imum. The selected model based on the maximized penalized likelihood satis�es

pm(j wil j) = 0 for certain w=��1m �i, which components accordingly are not

included in this �nal model, and so model estimation is performed at the same

time as model selection. The tuning parameters �M may be chosen by a data-

driven approach such as cross-validation or generalized cross-validation[32]. An

important point is that Hunter and Li showed that simple use of iterations 15

with the matrix D may permanently delete variables permanently from consid-

eration being included in further iterations.

Hunter and Li [44] showed that a perturbed version of pm(�) ,may be used

to de�ne a new objective function that is similar to the original but does not

lead to permanent variable deletion . To this end, they de�ne:

pm;�(�) = pm(�)� �
Z j�j

0

p�
�+ t

dt (17)

which in practice is equivalent to using the following matrix D� instead of

D:

D�(�
i) =

MX
m=1

diag(p
0

m(
��wil ��)= ���wil ��+ ��) (18)

Note that in the computations the original set of variables to be estimated

� is by de�nition augmented with spatial transforms (de�ned by the matrix

operators laid out in Table 2). Suppose that we have de�ned a model with

covariance matrices �1; � � � ;�M . Then we can use the following computational
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"trick", de�ning S =
h
��T1 ; � � � ;��TM

iT
and T = 1

M [�1; � � � ;�M ] we have

q = S � (19)

one may carry out penalized regression on this new set of variables by de�ning

XM = X T and solving the new (larger) problem, where the de�nition of Q is

self evident:

Q̂ = argmin
B

k(Z�XM Q )k2� +
MP
m=1

Pm ( q) (20)

Back transformation to the desired solution is obtained by B̂ = T Q̂. We

have found this algorithm to work well in practice

7 Evaluation of simulated data.

The procedures described in the two previous sections have been thoroughly

tested with simulated data. For simulations an �ideal cortex�was modeled by

a small world network de�ned over a two dimensional grid on the surface of a

torus (Figure 9).This structure has periodic boundary conditions in the plane.

In simulations described in detail in [70], the existence of a connection was

generated with a binomial probability that decreased with distance. The net-

work mean connectivity was: 6.23, the scaled clustering: 0.87, the scaled length:

0.19. This type of small-world network has a high probability of connections

between geographical neighbors and a small proportion of larger range connec-

tions. The network mean connectivity was: 6.23; the scaled clustering: 0.87;
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Figure 9: Ideal "cortex�us for simulations was modeled by a small world net-
work de�ned over a two dimensional grid on the surface of a torus. This struc-
ture has periodic boundary conditions in the plane. Di¤erent combinations of
strengths for were used for de�ning the autoregressive matrices used to create
simulated fMRI time series.

Figure 10: Simulated fMRI time-series generated by a �rst order multivariate
autoregressive model.
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the scaled length: 0.19. The autoregressive matrix being sampled from equation

2. The innovations were sampled from a Gaussian distribution with a di¤erent

prescribed covariance matrixes, including non diagonal ones. A simulated fMRI

is shown in Figure 10. The e¤ect of di¤erent observed lengths of time-series

(N) on the detection of connections was studied. The behavior of di¤erent pro-

cedures was compared by measuring the area under the ROC curve (AUC).

We found that while performance deteriorated with an increasing p
N ratio there

was still signi�cant detection rates with this ratio near 10. The performance

of the methods also deteriorated with increasing spatial innovation correlation.

This latter observation underscores the need for estimating also the covariance

matrix �. Doing this with computational e¢ ciency is still work in progress.

A number of further simulations were carried out in similar conditions as

those reported before to explore the usefulness of multiple penalty/covariance

matrix combinations. The p
N ratio was now set at 2. From Table 4 it is ev-

ident that, except for one exception, imposing simultaneously sparseness and

smoothness outperforms either criteria alone.

Method I L I+ L

L2 0.6825 0.7026 0.7438

L1 0.6157 0.7102 0.7657

L1 + L2 0.5766 0.6222 0.6257

NG 0.6722 0.6963 0.7434

Table 5. The numerical results of simulations testing of the ROC for the

di¤erent studied methods are presented.
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8 In�uence �elds for real data

To be able to apply these techniques to actual data it is necessary to have

a decision procedure as to which variables to �nally retain. We have found

that although the methods described above do enforce considerable selection of

variables, there is still a "grey zone" of variables with small values, for which

the decision has to be taken as whether to include or not.

We have therefore combined methods for penalized regression with proce-

dures for the control of the false discovery rates (FDR) [10][11][12]in situations

where a large number of null hypothesis is expected to be true. The situation

p >> n this case becomes strength instead of a weakness, because it allows the

non-parametric estimation of the distribution of the null hypotheses to control

false discoveries. To carry out this type of decision procedure it is preferable

to work with the in�uence measures de�ned by the t statistics 7. For this we

must estimate the standard errors of the �̂. We have explored two procedures

for this estimation. One is the "sandwich" formulas as described in [6][44][16].

However, we have found the estimation of the standard errors by means of the

bootstrap more robust than with the sandwich estimator.

In [70] it was shown that e¢ cient detection of connections possible simulated

neural networks. The method was additionally shown to give plausible results

with real fMRI data and is capable of being scaled to analyze very large data

sets. In that publication the variable-selection method combined with FDR

was illustrated by the identi�cation of the neural circuitry related to emotional

processing as measured by BOLD.
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As a �nal, real-world example, we describe in some more detail the concur-

rent EEG-fMRI experiment that has been used as an example throughout this

paper. This is a problem of su¢ cient size to test the practicality of the proce-

dures proposed since p the number of voxels is 16,240 and N is only 108.The

EEG was sampled at 200 Hz from an array of 16 bipolar pairs, (Fp2-F8, F8-T4,

T4-T6, T6-O2, O2-P4, P4-C4, C4-F4, F4-Fp2; Fp1-F7, F7-T3, T3-T5, T5-O1,

O1-P3, P3-C3, C3-F3, F3-Fp1), with an additional channel for the EKG and

scan trigger. The fMRI time series was measured in six slice planes (4 mm,

skip 1mm) parallel to the AC�PC line, with the second from the bottom slice

through AC�PC. More details about this data set can be found in [30]. In the

work presented here we report a typical subject from a set of �ve simultaneous

EEG/fMRI recordings from three di¤erent subjects.

For the fMRI, we examined the in�uence �eld with a source at that voxel

that had the largest (negative) correlation with the EEG PARAFAC component

for � rhythm. This latter component is the one obtained in the section above on

LVA methods and shown topographically in Color Plate 1(left) . The selected

voxel is marked in Figure 1 (arrow).

The in�uence �elds for the selected voxel obtained by using di¤erent models

is shown in Color Plate 2. The penalties are labeled on the left and the covari-

ances on the top. It is to be noted that the use of the spherical covariance matrix

produces quite "rough" in�uence �elds. When combined with the L1 penalty

only a scattering of points is selected, at most the same as N that is 108�a

known property of the LASSO. The
�
L2;Lr:p2

�
solution ("Ridge-Fusion") pro-
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duces a more pleasing (but perhaps excessively smooth) map that is in very

good correspondence with previous studies with simple correlations as well as

with PARAFAC. All the most realistic seeming solutions are those that combine

the spherical covariance matrix as well as the laplacian roughness penalty. In

fact, the solution that combines the spherical and laplacian covariance matrices

and also the L1 and L2 norm seems to be subjectively the best solution. This

impression is born out by comparison of the GCV values for all models. GCV

not only serves to �t the tuning parameters but also provides a yardstick for

comparing models. In this particular case, related to the models �t and dis-

played in Color Plate 2) there is a progressive decrease of GCV from top to

bottom and from left to right, indicating that the simpler models do not pro-

vide adequate modeling �exibility and providing some empirical support for the

usefulness of model 13.

9 Possible extensions and conclusions

Work with the SMAR model (13) is proceeding in several directions. Obviously

this approach can be extended for nonlinear autoregressions. This can be done

by

� Including bilinear (or higher order terms in the X matrix [5]; or by

� De�ning a kernel weighting in the state space for the autoregressive coef-

�cients as in [19].
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Figure 11: Color Plate 1 Spatial distribution of the � and � atoms as determined
by both PARAFAC of the EEG and Multilinear Partial Least Squares of con-
current EEG-fMRI recordings. Inverses solutions obtained from the spatial �k
signatures. Note the occipital and frontal distributions of the spatial signature
for the � and � atoms respectively.
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Figure 12: Color Plate 2. Results of �tting the sMAR with multiple penal-
ties/covariance matrixes. The a priori covariance matrix assumed are stated on
the top (spherical, laplacian, and a combination of both). The type of penaliza-
tion is stated on the left (L2 norm, L1 norm, and a combination of both known
as the elastic net). Each sub �gure is the in�uence �eld of the voxel marked
in Figure 1 with an arrow on the rest of the voxels corresponding to the slice
immediately below .
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On the other hand, a kernel method at di¤erent times would accommodate

nonstationary time series as in [37].

Extensions to the frequency domain of sMAR causality analysis are quite

straight forward. Either the sandwich formula or the bootstrap can be used to

provide estimates of any linear combination of in�uence �elds and therefore to

the temporal Fourier transform of the in�uence �elds over the di¤erent delays.

A vexing problem is the estimation of the covariance matrix �: We are

currently attempting to this by including a zero lag autoregressive matrix A0

in the formulation of the model.

In conclusion, we have introduced a spatial multivariate autoregressive model

based on a Bayesian formulation that combines several components of di¤erent

types of penalizations as well as spatial a priori covariance matrices. These

are shown by simulations and work with real data to be practical, even for

huge data sets, and that give plausible results. The methods continue to bring

into the framework of Statistical Parametric Mapping the analysis of e¤ective

connectivity via the analysis of Granger Causality.
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11 Figure Legends

Figure 1 MRI image as an example of a brain manifold. EPI MRI image of the

brain of a subject from [30]. The MRI section is at a level that passes through

the striate or primary visual cortex (VC). The arrow marks the voxel in VC for

which the BOLD response during alpha rhythm shows the highest correlation

with the power in that band.

Figure 2 Classical and spatial in�uence measures. On the left are the set

of nodes and how activity is propagated by a linear autoregressive model for

successive time instants. Arrows indicate nonzero autoregressive coe¢ cients at

di¤erent time lags. On the right are the corresponding causality graphs indi-

cating nonzero point in�uence measures Ix!y. a) Causality analysis of a time

series graph with only four nodes. In this hypothetical example only two time

lags are relevant. Note that each node depends on its own past through a order

two autoregressive model. Here we say y in�uences z at lag 1 and x in�uences z

at lag 2. b) Spatial extension of the concept of in�uence measure. The manifold


 in this case is a line segment. Also here only two time lags are relevant. Here

each point also depends on its past through an order two autoregressive model.

Additionally, we also have nonzero point in�uence measures of x on y with lag

1, point z in�uences the whole of set P at lag 2, and set M in�uences set N at

lag 1.

Figure 3 ROI Granger causality graphical model for concurrent EEG-fMRI

recording during alpha rhythm. The MRI from Figure 1 has been divided into

regions of interest (ROI) and a MAR model �tted to identify signi�cant in�u-
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ences. The EEG node corresponds to the EEG PARAFAC � component power

time series as shown in Figures 3-4. The rest of the nodes are fMRI time series

obtained by averaging activity over the following ROI: TH (thalamus), VC (Vi-

sual cortex), RI (right insula), LI (left insula), RS (right somatosensory cortex),

and LS (left somatosensory cortex).

Figure 4 Schematic representation of the PARAFAC model. The multi-

channel EEG evolutionary spectrum S (d; !; t) is decomposed into the sum of

�atoms�where the k�th atom is the trilinear product of loading vectors repre-

senting spatial (ak), spectral (bk), and temporal (ck) �signatures�.

Figure 5 Spectral and temporal signatures of the EEG PARAFAC atoms.

On the left the Spectral signatures bk (f) of the two atoms corresponding to fre-

quency peaks in the traditional � and � bands. The horizontal axis is frequency

! in Hz and the vertical axis is the normalized amplitude. right temporal

signatures, ck (t), of the � and � atoms.

Figure 6 In�uence measure analysis of the EEG-fMRI atoms. The external

variable imposition of a mental task was found to directly in�uence (negatively)

the activity of the � atom, which in turn in�uenced negatively the � atom

(Itask!� ,I�!� > 0 ).

Figure 7 Penalization functions

Plot of the penalization functions used to implement sparse and spatially

constrained regression techniques. The meaning of the abbreviations is summa-

rized in Table 1.

Figure 8 Spatial Constraints
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Figure 9 Ideal "cortex� us for simulations was modeled by a small world

network de�ned over a two dimensional grid on the surface of a torus. This

structure has periodic boundary conditions in the plane. Di¤erent combinations

of strengths for were used for de�ning the autoregressive matrices used to create

simulated fMRI time series.

Figure 10 Simulated fMRI time-series generated by a �rst order multivariate

autoregressive model.

Color Plate 1 Spatial distribution of the � and � atoms as determined by

both PARAFAC of the EEG and Multilinear Partial Least Squares of concurrent

EEG-fMRI recordings. Inverses solutions obtained from the spatial �k signa-

tures. Note the occipital and frontal distributions of the spatial signature for

the � and � atoms respectively.

Color Plate 2. Results of �tting the sMAR with multiple penalties/covariance

matrixes. The a priori covariance matrix assumed are stated on the top (spher-

ical, laplacian, and a combination of both). The type of penalization is stated

on the left (L2 norm, L1 norm, and a combination of both known as the elastic

net). Each sub �gure is the in�uence �eld of the voxel marked in Figure 1 with

an arrow on the rest of the voxels corresponding to the slice immediately below

.
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Abstract 

Multivariate Autoregressive time series models (MAR) are an increasingly 

used tool to explore functional connectivity in Neuroimaging. They provide the 

framework for analyzing the Granger Causality of a given brain region on others. 

In this paper we shall limit our attention to linear MAR models, in which a set of 

matrices of autoregressive coefficients (k=1,..,p) describe the dependence of 

present values of the image on lagged values of its past. Methods for estimating 

the  and determining which elements are zero are well known and are the 

basis for directed measures of influence. However, to date, MAR models are 

limited in the number of time series they can handle, forcing the a priori selection 

of a (small) number of voxels or regions of interest for analysis. This ignores the 

full Spatio-Temporal nature of functional brain data which are in fact collections 

of time series sampled over an underlying continuous spatial manifold---the 

brain. A fully Spatio-Temporal MAR model (ST-MAR) is developed within the 

framework of Functional Data Analysis. For spatial data each row of a matrix 

is the influence field of a given voxel. A Bayesian ST-MAR model is specified 

in which the influence fields for all voxels are required to vary smoothly over 

space. This requirement is enforced by penalizing the spatial roughness of the 

influence fields. This roughness is calculated with a discrete version of the spatial 

Laplacian operator. A massive reduction in dimensionality of computations is 

achieved via the Singular Value Decomposition, making an interactive 

exploration of the model feasible. Use of the model is illustrated with an fMRI 

kA

kA

kA



time series that was gathered concurrently with EEG in order to analyze the 

origin of resting brain rhythms.  



Introduction 

Devising methods for inferring the effective and functional connectivity of 

different brain regions is currently a major concern in neuroimaging (Friston, 

1994; Buchel & Friston, 2001; Lee, Harrison, & Mechelli, 2003; Buchel & Friston, 

2000). The task in hand is to determine the changing patterns of causal 

influences that different brain structures exert on each other by means of the 

analysis of dynamical brain imaging data. This type of data include EEG/MEG 

source distributions (Valdés, Riera, & Casanova, 2000), optical recordings 

(Schiessl et al., 2000) and fMRI (Harrison, Penny, & Friston, 2003) and are, from 

the statistical point of view, spatiotemporal data sets (Mardia, Goodall, Redfern, 

& Alonso, 1998; Wikle & Cressie, 1999)– that is vector valued time series where 

the dimensionality of the vectors is very large having originated from sampling 

over an underlying continuous manifold.  

Ideally, methods for connectivity analysis in the brain should be able to 

address the full four dimensional spatiotemporal nature of the basic data (Mardia 

et al., 1998; Stroud, Muller, & Sanso, 2001). Additionally, they should be capable 

of measuring directed influence x yI →  of region x on region y (Geweke, 1982; 

Geweke, 1984). Unfortunately, most methods for analyzing connectivity in 

Neuroimages fall short of these requirements. 

Latent structure models such as PCA (Ruchkin, John, & Villegas, 1964; 

Friston, Phillips, Chawla, & Buchel, 1999) or ICA (McKeown et al., 1998) analyze 

the full set of voxels in brain images. They extract subsets of voxels that are 



statistically dependent and therefore may serve to identify functionally coupled 

brain subsystems. These models however are not designed for determining the 

directional connectivity associated with causal inference. Information on timing of 

events for example is not used to determine possible causal influences. They 

may be characterized as having high spatial but no temporal resolution. 

Structural Equation Modeling (McIntosh & Gonzalez-Lima, 1994) on the 

other hand does face up to the issue of inferring directional influences and is 

firmly grounded in the modern statistical analysis of Causality (Pearl, 1998) via 

graphical models. Initial studies (McIntosh et al., 1994) in Neuroimaging, being 

based on non dynamical PET data, ignored temporal information. The concept of 

Granger Causality (Granger, 1969; Hosoya, 1991) does make use of temporal 

information in order to establish a measure of directed influence. This measure 

has been imported from the field of econometrics for use in the analysis of 

electrophysiological measurements (Baccala & Sameshima, 2001; Freiwald et 

al., 1999; Hesse, Moller, Arnold, & Schack, 2003; Kaminski, Ding, Truccolo, & 

Bressler, 2001; Bressler, Ding, & Yang, 1999; Bernasconi & Konig, 1999). 

Recently Dahlhaus and coworkers (Dahlhaus, Eichler, & Sandkuhler, 1997; 

Dahlhaus, 2000) have combined the notion of Granger Causality analysis with 

that of graphical models.  

The measurement of Granger Causality analysis is usually based on a 

Multivariate Autoregressive Model of the data (MAR), be it linear (Penny & 

Roberts, 2002; Geweke, 1982; Geweke, 1984; Gersch & Yonemoto, 1977) or 

nonlinear (Freiwald et al., 1999). The recent introduction of linear and bilinear 



MAR models for fMRI data (Harrison et al., 2003) has opened the way for 

measuring linear and nonlinear Granger Causality in this type of data. However, 

the specific type of modeling used in the cited references only allows only a very 

limited number of time series to be included in the analysis, resulting in models 

that have very moderate spatial resolution. This forces the a priori choice of 

either privileged certain voxels to be analyzed, or alternatively the selection of 

regions of interest over which average values of activity must be obtained. What 

is lacking is the development of fully Spatio-Temporal for AR modeling (ST-MAR. 

As an concrete and motivational illustration of what has just been said, 

consider one of the fMRI time series that was gathered concurrently with EEG in 

order to analyze the origin of resting brain rhythms (Goldman, Stern, Engel, & 

Cohen, 2001; Goldman, Stern, Engel, & Cohen, 2002; Martinez-Montes, Valdes-

Sosa, Miwakeichi, Goldman, & Cohen, 2003). . As described in those papers, 

significant correlations were found between time-varying spectral components in 

different EEG bands and the BOLD signal. Figure 1 (left) shows the map of EEG-

BOLD correlations for the alpha rhythm. This figure reveals widely distributed 

anatomical systems that are apparently involved in the generation of this 

oscillation. These same locations are also identifiable on the basis of the fMRI 

information alone as shown by further study of the BOLD signal from the voxel 

with the highest (negative) correlation with alpha power. The correlation map of 

this voxel with all others was obtained and is shown in the lower left panel of 

Figure 1. It is interesting to note that this map looks very similar to the one on the 

left, except for a sign inversion. When faced with this type of data, the question 



immediately arises as to which voxel is driving which. But no currently available 

MAR model can be fit to this amount of data in which the number of time series is 

much larger than the number of time points. 

This paper will propose a ST-MAR precisely for this type of situation. This 

model is a generalization of the "smoothness priors" approach to MAR 

introduced by (Kitagawa & Gersch, 1985) but now applied to spatial aspects in 

the framework of Functional Data Analysis or FDA; (Ramsay & Dalzell, 1991; 

Ramsay & Silverman, 1997). A fully Spatio-Temporal MAR model (ST-MAR) is 

developed within the framework of Functional Data Analysis. For spatial data 

each row of a matrix shall be termed the influence field of a given voxel. A 

Bayesian ST-MAR model is specified in which the influence fields for all voxels 

are required to vary smoothly over space. This requirement is enforced by means 

of a penalization of spatial roughness of the influence fields calculated with a 

discrete version of the spatial Laplacian operator. A massive reduction in 

dimensionality of computations is achieved via the Singular Value 

Decomposition, making an interactive exploration of the model feasible. The 

exploratory use of the model is illustrated the data fMRI time series presented 

above (Goldman et al., 2001; Goldman et al., 2002). 

kA

Bayesian Multivariate Autoregressive Model 

In what follows we shall denote vectors with lower case bold letters, 

matrices with upper case bold letters. We shall also use a general matrix-variate 

notation for Gaussian and related distributions (i.e. inverse Wishart) which was 



introduced by Dawid (Dawid, 1981) to avoid the use of the vectorization (vec) 

operator and Kronecker products previously necessary for the Bayesian analysis 

of multivariate regressions (see the cited paper for details). 

Let the dynamic neuroimaging data set be considered a vector valued 

time series: , where 
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the time instants at which samples are gathered. We shall posit a Multivariate 

Autoregressive Model (MAR) for the 
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where p denotes the model order, the  are the matrices of 

autoregressive coefficients (of dimension 

kA

NsNs× ) and e  the model 

innovations(Geweke, 1982). We shall assume that the innovations are 

multivariate normal vectors with mean zero and covariance matrix , that is: 

. Note that contains information about instantaneous 

interactions between voxels whereas the are reflecting the directed linear 

interactions between voxels. In effect the coefficient  of  is the (linear) 

contribution of voxel j on voxel i at time lag k. 
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For small to moderate Ns there are a number of estimation procedures for 

the coefficient matrices  based on ordinary least squares (Neumaier & kA



Schneider, 2001; Schneider & Neumaier, 2001; Gersch et al., 1977). However 

ordinary least squares methods fail when the number of parameters to be 

estimated is very large relative to the number of observations and when the time 

series are highly correlated.  

A more general approach is the Bayesian framework (Kitagawa et al., 

1985; Penny et al., 2002; Harrison et al., 2003), which is adopted in this paper 

and which shall be immediately explained. Equation (1) may be rewritten as a 

Multivariate Regression by defining 1[ , , p ]=A A A" , and 
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in which case: 

        (2) = +Y A X E

The likelihood of the data given the parameter set Y [ ],Θ = A V  and the 

data at previous time lags  is denoted by X ( , ;P Y A V X)  and is determined by 

the specifications abd = +Y A EX ( ), ,Ns Ns Ns×V INE 0∼  which lead to the following 

expression: 

( )( )( )1
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−
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V
 (3) 

In the non Bayesian approach the estimators for [ ],Θ = A V  are obtained 

by maximizing(3). The Bayesian formulation of the MAR also posits an a priori 



distribution forΘ , (P Θ X)  which encapsulates our prior knowledge about the 

autoregressive coefficients and the innovation covariance matrix. A specification 

that is widely used, the conjugate Normal-Inverse Wishart formulation (Minka, 

2000) which is achieved by selecting ( ), ,N αA 0 V Σ∼  and 

where (1 ,W β−V Σ∼ )No , ,α β

( , ,αV

(Ns Ns×
B

Σ

NA 0∼

( ) ( )Ns NsNs× × U

tB B

 are hyper parameters that also need to  be 

specified. The a priori distributions for the autoregressive coefficients and the 

innovation covariance are expressed in terms of a notation for the matrix-variate 

probability densities as described by Dawid (Dawid, 1981). For example, the 

requirement that  is equivalent to saying 

that , where are i.i.d. normal random variates and 

and . In other words  is strongly related to the a priori 

covariances of the rows of the autoregressive coefficient matrices. (Minka, 2000): 

Our formulation differs from that of (Penny et al., 2002) in that these authors 

specify a "vague" prior for V . For relations between the two approaches see 

Minka (Minka, 2000). To summarize, the a priori density is: 
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Combining (3) and (4) we have that the posterior distribution is (see 

(Minka, 2000): 
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is to be noted that the normal- inverse Wishart conjugate distribution specification 

guarantees that the a posteriori distribution belongs to the same family as the 

likelihood and the a priori distribution.  

From (5) the Bayesian MAR maximum a posteriori (MAP) estimators are 

easily obtained in closed form and are equal to: 
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The Bayesian formulation just described depends critically on the choice 

of . Previous specifications on this matrix have been concerned mainly with 

regularizing temporal properties of MAR. Kitagawa et al. (Kitagawa et al., 1985) 

crafted  to request smoothness of MAR coefficients in either the time or 

frequency domain. This was the same concern of (Penny et al., 2002; Harrison et 

al., 2003), a main objective being avoidance of over fitting the model by 

increasingly penalizing higher lag coefficients 

Σ

Σ

Spatio Temporal MAR 

In Neuroimaging the actual underlying model is: 
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where integration is over brain manifolds. Equation (1) is now a discretized 

version of (7). In our concrete example Ns=12,642 since we are dealing with a 



large part of the fMRI image volume. That is, at each instant of time observation 

vector comprises all signals sampled over the points in the grid shown in Figure 

2. This is grid is the intersection of the MRI sampling grid with segmented brain 

tissue (valid brain voxels). However, in principle, the amount of data points could 

increase to infinity with improved MRI techniques. Not only is the spatial 

dimension massive but it is to be expected that nearby spatial points will be 

highly correlated.  

In order to overcome these problems and develop a ST-MAR that is valid 

no matter high fine the spatial sampling rate, we propose to regularize the 

discrete Equation (1) by the use of a roughness penalty approach to enforce a 

degree of smoothness of the autoregressive coefficients. To be more specific 

consider j-eth rows of the different matrices. Each is the defined over all valid 

brain voxels and is shall be termed, for each lag k, the k lag influence field. Our 

model specification will impose smoothness over the influence fields for all voxels 

and lags by defining the covariance matrix

kA

2L−=Σ . denotes a discrete version 

of the spatial Laplacian operator and is the square root of a roughness penalty 

matrix (Ramsay et al., 1997) that will punish spatial roughness of the rows of all 

influence fields. It is defined over the grid of valid brain voxels (Figure 2) and is 

encoded via a MATLAB sparse matrix (Figure 3). The definition of the roughness 

penalty is: 

L
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Note that we have chosen L  to be symmetric, of full rank and well 

conditioned. 

A system for the exploratory analysis of ST-MAR has been written in 

MATLAB (®Mathworks). Though at first sight the evaluation of the estimators (6) 

would seem to be a daunting task, it has been possible to achieve an interactive 

system that can operate in real time. Some of the technical solutions employed to 

make this possible are now detailed. 

1.-Due to the form of the penalty matrix is is possible to transform the 

multivariate regression problem (2) to the case where =Σ I  in which case this 

problem takes on the form of a standard Tikhonov regularization, for which there 

has been considerable work and software developed (Hansen, 1999). In 

particular, in this context, an easily evaluated criterion Generalized Cross 

Validation (GCV) allows a computationally inexpensive automatic selection of the 

hyper parameters p, α and β.(Golub, Heath, & Wahba, 1979). 

2.-Massive dimensionality reduction is possible by means of the Singular 

Value Decomposition (SVD) of . The multivariate regression problem may then 

be transformed so the computational complexity is then determined not by Ns but 

by Nt. Our approach to analyzing a data matrix where the number of variables is 

much larger than the number of data points is similar but not identical with that 

described by West (West, 2002).  

X

3.-Calculation of each the influence fields for each lag and voxel is carried 

out on demand. This avoids storing the full set of autoregressive matrices. 



Instead two matrices of dimension Ns Nt p× ×  suffice to reconstruct any given 

influence field for any lag. 

Instead of trying to determine if individual autoregressive coefficients are 

zero the influence fields will be treated as Neuroimages. The current 

implementation, Statistical Parametric Mapping of the influence fields is currently 

carried out by thresholding an approximate t statistic image derived for each 

influence field. Thresholds are set according to Random Field Theory (Worsley et 

al., 1996). The t image is based on the Jackknife . (Efron, 1986): Leave one out 

samples are created using and jackknife pseudo values are obtained which are 

then used to calculate the t image. The usual bipolar scales are used for these 

images in order to depict both positive and negative significant areas in the t 

image. 

Application to the fMRI data set 

An example of an exploratory analysis with the ST-MAR model is now 

provided. The data analyzed is the BOLD signals from the concurrent EEG/fMRI 

data that has already been described in the Introduction. Information on voxel 

interrelationships is shown in Figure 1.  

The EEG was sampled at 200 Hz from an array of 16 bipolar pairs, with an 

additional channel for the EKG and scan trigger. The fMRI time series was 

measured in 6 slice planes (4 mm, skip 1 mm) parallel to the AC-PC line, with the 

second from the bottom slice through AC-PC. More details about this data set 

can be found in Goldman et al. (Goldman et al., 2002). Informed consent was 



obtained from the volunteer based on a protocol approved previously by the 

UCLA Office for the Protection of Research Subjects. As mentioned previously 

Ns=12,642 and Nt=108.  

For this data the GCV criterion indicated that the most appropriate model 

order for the ST-MAR model was p=1 in equation (1). According to the 

description in  the previous section, the user interactively can select a voxel and 

observe the SPM for the jackknifed t image. In the lower right hand panel of 

Figure 4 an arrow indicates a voxel in the thalamus for which the influence field 

was then calculated. The thresholded t image (for global significance level of 

0.05) is shown in Figure 4. It should be noticed that for this particular point 

significant positive influences are concentrated around the thalamus and midline. 

A large negative influence of the thalamic voxel selected is found in frontal 

regions. 

Discussion 

The field of Neuroimaging provides data that in principle is actually defined 

over an underlying spatial continuum. Thus more accurate sampling will only 

increase the number of highly correlated variables that are measured on a 

always insufficient number of subjects and conditions. The need for spatial 

regularization of some sort is a recurring problem in the statistics of Human Brain 

Mapping (Purdon, Solo, Weisskoff, & Brown, 2001; Kustra & Strother, 2001). 

This spatial regularization is the basic tenet of FDA (Ramsay et al., 1997). To our 

knowledge this is the first attempt to use the FDA approach to obtain a MAR 



defined over a spatial domain. The methods are quite general have been 

implemented in real time by carrying out computation in a reduced dimensional 

space. The Bayesian formulation allows other a priori knowledge to be integrated 

into the model in a principled way. The procedure proposed concentrates on the 

examination of influence fields for given voxel and lags and therefore brings at 

least part of the information necessary for the evaluation of Granger Causality 

into the domain of well known methods for Neuroimaging statistics. 

The use of a conjugate normal-inverse Wishart prior was adopted in order 

to obtain closed solutions for the estimators for the influence fields. This choice is 

asymmetric. If it is reasonable to require that the influence of a voxel other points 

in the brain be similar if those points are near, then the converse is also valid. 

That is that influences on a given voxel from two points that are nearby be also 

similar. This a requirement on the smoothness of the columns of the matrices 

instead of on the rows as enforced in this paper. Additionally, the a priori 

modeling of the covariance matrix deserves more attention. In either case, 

different choices than those of this paper will lead to non conjugate priors, a 

direction in which Bayesian regression has already gone (Brown, Fearn, & 

Vannucci, 1999). An additional point that might require modification is the use of 

the GCV criterion for hyper parameter selection. A more consistent approach 

might be to use the Bayesian evidence for this purpose as in (Penny et al., 2002; 

Harrison et al., 2003). 

kA

The method proposed is intended for exploratory analysis only and thus is 

of use only when there are external criteria to guide the selection of the voxels for 



which influence fields would want to be determined. A fully automatic search for 

influence fields is however quite possible and in fact is just another example of 

the variable selection problem in multiple regression (Brown et al., 1999; Brown, 

Vannucci, & Fearn, 2002). 

A number of extensions of this approach are possible and probably 

necessary; the Bayesian formulation will accommodate all these. We mention 

some examples just to illustrate the possibilities.  If the prior distributions are 

selected properly, slow changes  of the  over time may be modeled, 

extending this work to non-stationary processes, a Spatio-Temporal analog of 

(Hesse et al., 2003). In a similar fashion allowing the  to be a smooth 

functions of the previous state of the system would accommodate the modeling 

of nonlinear dynamical systems, a Spatio-Temporal analog of (Freiwald et al., 

1999). The use of anatomical constraints may be easily introduced, be it to limit 

the voxels for which influence fields are estimated or to establish a priori 

constraints based on fiber tract information. 

kA

kA

Finally a major challenge must be mentioned. The motivating example in 

the introduction is from a concurrent EEG/fMRI experiment in which the EEG and 

BOLD time series in all truth live in totally different temporal scales. Developing 

concepts for multiscale Spatio-Temporal Granger causality would allow 

multimodal image fusion for connectivity evaluation. 
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Figure Legends 

Figure 1 

Correlation Maps for fMRI time series obtained with concurrent EEG 

recording. Left side: Correlations between power fluctuations in the alpha range 

and BOLD signals at each voxel. Only those correlations calculated at voxels in 

segmented brain tissue are shown. Right side: Correlations between BOLD 

signal in all brain voxels and the signal at the voxel having the highest correlation 

with alpha power fluctuations (minimum correlation in left side figure). Both 

figures are thresholded for an overall significance level of p<0.05. 

Figure 2 

Grid for which analyses were carried out in this paper. In particular a 

discrete version of the spatial Laplacian operator was obtained from this grid 

(Figure 3) by means of expression (8) in the text.  

Figure 3 

Graphical display of the Laplacian matrix used as a roughness penalty to 

enforce spatial smoothness of the influence fields (rows of autoregressive 

coefficients) in the ST-MAR model. This is the default MATLAB display of sparse 

matrices where each entry in the matrix which is zero is shown as a black point 

and every non zero element is displayed as a white point. Note the extreme 

sparseness of the matrix which facilitates efficient computation.  



Figure 4 

Statistical Parametric Map of the Jackknife t image of the influence field 

for a point in the thalamus. This point is marked by an arrow in the lower right 

panel. The optimal model only had one time lag. The t image was calculated from 

Jackknife pseudo values and is thresholded for an overall significance level of 

p<0.05.  



20 
 

 

Testing non-linearity and directedness of interactions between neural 

groups in the macaque inferotemporal cortex 

  



Journal of Neuroscience Methods 94 (1999) 105–119

Testing non-linearity and directedness of interactions between
neural groups in the macaque inferotemporal cortex

Winrich A. Freiwald a,c,*, Pedro Valdes b, Jorge Bosch b, Rolando Biscay b,
Juan Carlos Jimenez b, Luis Manuel Rodriguez b, Valia Rodriguez b,

Andreas K. Kreiter a, Wolf Singer c

a Institute for Brain Research, Uni6ersity of Bremen, FB2, P.O. Box 330440, D-28334 Bremen, Germany
b Cuban Neuroscience Center, A6e 25 No. 5202 esquina 158 Cubanacán, P.O. Box 6880, 6990 Ciudad Habana, Cuba

c Max-Planck-Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany

Received 2 July 1999; accepted 9 August 1999

Abstract

Information processing in the visual cortex depends on complex and context sensitive patterns of interactions between neuronal
groups in many different cortical areas. Methods used to date for disentangling this functional connectivity presuppose either
linearity or instantaneous interactions, assumptions that are not necessarily valid. In this paper a general framework that
encompasses both linear and non-linear modelling of neurophysiological time series data by means of Local Linear Non-linear
Autoregressive models (LLNAR) is described. Within this framework a new test for non-linearity of time series and for
non-linearity of directedness of neural interactions based on LLNAR is presented. These tests assess the relative goodness of fit
of linear versus non-linear models via the bootstrap technique. Additionally, a generalised definition of Granger causality is
presented based on LLNAR that is valid for both linear and non-linear systems. Finally, the use of LLNAR for measuring
non-linearity and directional influences is illustrated using artificial data, reference data as well as local field potentials (LFPs)
from macaque area TE. LFP data is well described by the linear variant of LLNAR. Models of this sort, including lagged values
of the preceding 25 to 60 ms, revealed the existence of both uni- and bi-directional influences between recording sites. © 1999
Elsevier Science B.V. All rights reserved.

Keywords: Non-linear dynamics; Granger causality; Multivariate non-linear autoregression; Bootstrap test for non-linear time series; Local field
potential; Inferotemporal cortex
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1. Introduction

Visual information processing in the mammalian
brain is based on a multitude of cortical and subcortical
structures. Within the macaque cortex more than thirty
visual areas have been described (Felleman and van
Essen, 1991), a number likely to be paralleled in other
higher mammals, including humans. Neuroanatomical,
and electrophysiological evidence suggests, that these
cortical areas are further subdivided into anatomical
compartments composed of neurons with distinct phys-

iological properties (Kaas and Krubitzer, 1991). Thus,
multiple neuronal populations in different areas process
different aspects of a visual stimulus. Since receptive
fields of cortical cells usually behave like broadly tuned
filters in a high dimensional feature space (Martin,
1994; van Essen et al., 1992), a given stimulus, which
has different features like spatial position in the visual
field, velocity, disparity, colour and form cues, will
activate large neural populations within the same and
in different cortical areas. These distributed responses
have to be integrated into a coherent representation.
The establishment of this representation requires exten-
sive interactions between different neuronal populations
within the same and in different cortical areas, since
there is no final integration area in the brain onto
which all processing pathways would converge.
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The structural properties of cortical networks sup-
port such extensive interactions. Connections between
cortical neurons are generally characterised by a high
degree of divergence and convergence. Each cortical
area is sending output connections to and is receiving
input connections from several other cortical areas.
These connections are so numerous that about one
third of all possible connections between visual areas
have been discovered and roughly one half of them are
expected to exist (Felleman and van Essen, 1991).
Based on these connectivity patterns between cortical
areas, their strength, the spatial arrangement of areas
and the relatedness of their functional properties, differ-
ent schemes for their arrangement into processing path-
ways have been proposed (Ungerleider and Mishkin,
1982; Felleman and van Essen, 1991; Goodale and
Milner, 1992; Scannell et al., 1995; Hilgetag et al.,
1996). These pathways are characterised by extensive
feedback connections, lateral connections to areas at
the same processing level and connections by-passing
intermediate levels of the hierarchy (see, e.g. Rockland
and van Hoesen (1994)). Recent physiological data
show that feedback projections can exert substantial
effects onto earlier processing stages (Hupé et al.,
1998). Large temporal overlap of the response periods
of neurons even in areas at very different levels of the
processing hierarchy (Nowak and Bullier, 1997) further
support mutual influences. Thus, current neuroanatom-
ical and neurophysiological evidence suggests extensive
mutual interactions between distributed groups of
neurons.

Despite these results, the mechanisms which serve to
integrate the activities of different neurons into a coher-
ent representation are still a much debated issue. A
recent concept of information processing in the cortex,
extending Hebb’s cell assembly concept (Hebb, 1949),
stresses the importance of the relative timing of action
potentials to express relatedness of responses (von der
Malsburg, 1981; Singer et al., 1990). According to this
temporal binding hypothesis, neurons belonging to the
same assembly should synchronise their responses,
while cells belonging to different assemblies should fire
asynchronously. Indeed, many experimental findings in
the visual cortex are in agreement with this theory,
including the existence and stimulus dependency of
inter- and intra-areal synchronisation (see, e.g. Singer
and Gray (1995); Engel et al., (1997) for recent re-
views). According to this conceptual framework as well
as to similar ones (Johannesma et al., 1986; Gerstein et
al., 1989; Abeles, 1991; Aertsen et al., 1991; Sporns et
al., 1991; Ahissar et al., 1992; Prut et al., 1998), neural
interactions change in relation to current processing
requirements defined by external stimuli and the inter-
nal behavioural state of the animal. Much previous
work related to these concepts has focused on the
strength of neural interactions as indicated by correla-

tion measures. Less attention has been paid to the
direction of these interactions as a further dynamic
property of functional connectivity. However, in our
opinion, directed influences (or causal relations) that
individual neurons (Abeles, 1982; Gerstein and Aertsen,
1985) or larger neural groups exert on each other and
their variation in time might be of prime importance for
cortical information processing. This idea seems to
follow naturally from considerations of visual percep-
tion. Recent psychophysical research provided evidence
that the perception even of the most elementary aspects
of a visual scene may depend on factors like attention,
past experience, or the segmentation of the visual scene
into different objects (Braddick, 1996). In these situa-
tions top-down processing should be more prominent
than in other instances, e.g. in the case of rapid process-
ing, in which the system might essentially operate in a
feed-forward manner (Thorpe et al., 1996). Accord-
ingly, the relative influence of a ‘higher level’ neural
group on a second, ‘lower level’ one might be stronger
in the former condition than in the latter. Even during
the response to a stimulus, the pattern of these relative
influences between individual neurons or ensembles of
neurons might change over time. Thus, in analysing
information processing in the visual system, there is a
strong interest to study the interactions of neuronal
groups, i.e. to infer the direction of these influences
from simultaneous electrophysiological recordings.

To define this problem formally, let us denote by xt,yt

the values of electrical recordings at time t obtained
from any of two sites. Let us also denote the vector of

observations from both sites at time t as zt=
�xt

yt

n
.

Henceforth we shall use lower boldface type to indicate
vectors and upper boldface type to indicate matrices.
With this notation in place, our problem can then be
formalised as defining a measure I(y�x) which will
quantify the influence of time series yt on time series xt.

1.1. First generation influence measures: linear
instantaneous influences

A first generation of methods (Gerstein et al., 1978)
assessed neural interactions by means of correlation
methods, based on the use of linear regression. There
have been many recent papers along these lines in the
neuro-imaging literature, specific instances being path
analysis (McIntosh and Gonzalez-Lima, 1994), partial
least squares (McIntosh et al., 1996) and the general
concept of ‘functional connectivity’ (Friston, 1994).
These methods are based upon two implicit
assumptions:
1. Interactions between neural ensembles are linear.
2. Interactions between neural ensembles are instanta-

neous, that is they depend only on the current state
of the system.



W.A. Freiwald et al. / Journal of Neuroscience Methods 94 (1999) 105–119 107

Both of these assumptions may be summarised by the
following equation:

xt=ayt+wt

yt=bxt+zt (1)

where the coefficients a and b express the linear instan-
taneous relationships between series y and series x.
These may be written in matrix notation as:

zt=Azt+ot (2)

where we have used the following notation:

zt=
�xt

yt

n
A=

�0
b

a
0
n

ot=
�w t

z t

n
The time series ot is known as the ‘innovation’ and

can be viewed alternatively as a white noise process
driving the system or as the error of prediction of one
time series given the other. Note that all relations
involve only the current time t ; this is what is meant by
instantaneous interactions. First generation influence
measures are defined as association coefficients that
quantify how much of the total variation of the time
series are explained by instantaneous linear
relationships.

1.2. Second generation influence measures: Granger
causality

The second assumption of first generation influence
measures, that of instantaneous neural interactions, is
clearly not realistic since it ignores:
� The delay of transmission of information from one

neural site to another.
� The fact that the evolution of the system may de-

pend not only on the immediate past as is evidenced
by the rich temporal structure of neural time series.

Therefore, more realistic signal models substitute As-
sumption 2 above by:

3. The evolution of the state of the system may be
described as a function of a finite number of past states.

On the basis of this assumption, Eq. (2) may be
generalised by stating a dependence of zt not only on its
own value, but also upon a set of p past vectors. (We
will refer to p as ‘the number of lagged values’ in the
remainder of this paper, and accordingly use ‘lagged
values’ or ‘lagged vectors’.) These can be stacked into
‘delay matrices’ Yt= [yt, yt−1,…, yt−k,…, yt−p ], Xt=

[xt, xt−1,…, xt−k,…xt−p ], and Zt=
�Xt

Yt

n
, which con-

tain all the information of both time series p points into
the past.

The most frequently used linear model is the Multi-
variate Linear Autoregressive model:

zt= %
p

k=1

Ak · zt−k+ot (3)

Based on the Multivariate Linear Autoregressive
model a second generation of measures of influence has
been proposed (Gersch, 1970, 1972; Akaike, 1974;
Franaszczuk et al., 1985). These not only take into
account the correlation structure within and between
the observed time series, but they also allow use of the
‘arrow of time’ to devise influence measures to statisti-
cally assess causality as introduced by Granger and
co-workers (Granger, 1963, 1969, 1980; Granger and
Lin, 1995). Granger reasoned thus: if time series xt is
influencing yt then adding past values of xt to the
regression of yt will improve its prediction. This princi-
ple was originally formulated in a very general way,
encompassing both linear and non-linear systems. How-
ever, Granger pointed out the difficulty of using non-
linear models (Granger and Newbold, 1977) by stating:
‘Thus for purely pragmatic reasons, the ‘optimal predic-
tion’ … should be replaced by ‘optimal linear predic-
tion’’ (p. 226). Almost all specific measures of Granger
causality have therefore been based on linear models.

To be specific, consider the prediction of xt based
only on its own past:

xt= %
p

k=1

akxt−k+wt (4)

In this case the innovation series wt will have a
variance s2

x�X where the suffix indicates that the error
variance is that of series xt predicted only by its own
delay matrix Xt. Now consider the following model,
which adds the past values of yt as predictors of xt :

xt= %
p

k=1

akxt−k+ %
r

q=1

bkyt−q+ft (5)

Note that the number of delays of series yt used to
predict series xt is r and thus does not have to be equal
to p. In this case the prediction error is now ft which
will have a variance s2

x�Z where the suffix indicates that
series xt is now predicted by the complete delay matrix
Zt which includes the past of both series. Based on
these definitions, Granger introduced the following (lin-
ear) influence measure (Granger, 1969):

ILIN(y�x)= ln
� sx�X

2

sx�Z
2

�
(6)

Note that this measure of influence has the right
properties. If the past of series yt does not improve the
prediction of series xt then s2

x�Z will be equal to s2
x�X and

the influence measure will be zero. Any improvement in
prediction leads to a decrease in the denominator in Eq.
(6) and therefore increases the value of the influence
measure. A symmetrical definition of the influence of
series xt on yt is possible. In fact, Geweke and others
have generalised these definitions to multivariate time
series and have defined influence measures between two
sets of time series conditional on a third set of time
series (Geweke, 1982, 1984).
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Bernasconi and co-workers (Bernasconi et al., 1998;
Bernasconi and König, 1999) have applied this type
of influence measure to electrophysiological record-
ings. These authors also carried out a spectral decom-
position of the causality measures and provided
empirical confidence intervals for this spectrum by
means of the bootstrap. The results obtained indicate
that influence measures are indeed a useful tool for
studying neural effective connectivity.

1.3. Third generation influence measures: non-linear
Granger causality

The above work presupposes that neural systems
are linear. Neither the Hodgkin and Huxley equations
of single cell neurophysiology, nor the modelling of
synaptic interactions result in linear equations.
Whether the ensemble behaviour of neural masses
scales to a linear approximation is a matter of great
importance to be determined empirically. The recent
trend in signal modelling in neuroscience has been
quite in the opposite direction to linear modelling.
Results obtained with analytical methods derived
from ‘chaos theory’ (see Elbert et al. (1994) for a
review) have provided evidence for the essentially
non-linear nature of large-scale EEG-, ECoG- and
MEG-signals, even though the existence of underlying
chaotic dynamics may not be demonstrable (Valdes et
al., 1999). If the time series are non-linear then meth-
ods based on linear regression as those described
above may be misleading.

There have been several previous attempts to gener-
alise the first generation influence measures to the
non-linear case as exemplified in the work of Lopes
da Silva and Mars (1987) by using both information
theory concepts (Pijn et al., 1990) and correlation
concepts based on non-linear regression. Both works
demonstrated that in specific instances the assumption
of linear interactions was misleading and that rather
than the relationship expressed in Eq. (2) the follow-
ing expression should be used:

zt=F(zt)+ot (7)

where F is a non-linear relationship. This model and
the aforementioned measures based on it suffer from
the shortcomings of all first generation methods enu-
merated in the previous section.

A third generation of influence measures is ob-
tained by the application of Granger’s most general
concept of causality (Granger and Newbold, 1977), in
the context of a specific non-linear multivariate
model:

zt=F(Zt)+ot (8)

in which F is not necessarily linear. The difficulty of

this task has been the specification of a tractable
framework for non-linear time series analysis. One
such framework was proposed by Ozaki (1985) and
later generalised by Tong (1990). This consists in
specifying a linear Autoregressive model in which the
coefficients Ak will now depend on the previous states
of the system:

zt= %
p

k=1

Ak(Zt) · zt−k+ot (9)

(This is a generalisation of Eq. (3) which has coeffi-
cients Ak independent of the delay matrix Zt.)

A number of recent papers implementing Granger
causality measures are based on particular non-linear
time series models (Teräsyirta, 1998; Warne et al.,
1999). It must be stressed, however, that the model
selected for implementing causality measures must be
matched to the dynamic characteristics of the time
series studied. Recent work (reviewed in Valdes et al.
(1999)) has shown that not all non-linear models are
capable of capturing the complex characteristics of
neural signals. The class of models that offered a
good trade-off between computational complexity and
descriptive properties were the use of locally weighted
polynomial non-parametric regression (Fan and Gij-
bels, 1995, 1996). Bell et al. (1996, 1998) have devised
Granger causality measures for a specific class of ad-
ditive local polynomial models. In a series of recent
papers Valdes and co-workers (reviewed in Valdes et
al. (1999)) have applied Local Linear polynomial re-
gression to the analysis of neural signals. On the ba-
sis of this technique they have implemented a specific
measure of Granger causality for the analysis of non-
linear multivariate neurophysiological signals and
have carried out the preliminary evaluation of these
measures (Valdes et al., 1996). This family of models
includes ordinary linear Autoregression as a special
case.

The purpose of this paper is fivefold
1. To describe a general framework that encompasses

both linear and non-linear modelling of neurophysi-
ological time series by means of Local Linear Non-
linear Autoregressive models (LLNAR).

2. Within this framework to describe new tests for a)
non-linearity of time series and for b) non-linearity
of neural interactions, both based on the LLNAR
model.

3. To introduce a specific measure of Granger Causal-
ity for directed influences based on the LLNAR
model and a test of significance for this measure.

4. To show the advantages of this measure of causality
for non-linear data.

5. To show examples of the use of LLNAR with
non-linear reference data and local field potentials
(LFPs).
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2. Material and methods

2.1. The electrophysiological data

To test the new data analysis methods, recordings
were taken from the visual cortex of awake macaque
monkeys. Since numerous previous crosscorrelation
studies have shown that the likelihood to find syn-
chronous activity generally declines with cortical sepa-
ration of recording sites (see, e.g. (Ts’o et al., 1986; Ts’o
and Gilbert, 1988; Krüger and Aiple, 1988; Engel et al.,
1990)), we chose to apply our methods to data obtained
from recordings from within the same cortical area in
order to maximise chances for finding signs of interac-
tion. Amongst the many different visual cortical areas,
we chose to analyse field potential recordings from area
TE for the following reasons: First, the large receptive
fields of the cells in this part of the brain are indicative
for integrative mechanisms in this area. Second how-
ever, the large receptive fields allow for many indepen-
dent stimuli to stimulate the same neuron. Thus, the
problem to handle related signals coherently and at the
same time functionally separate them from unrelated
signals is aggravated. This suggests the existence of
dynamic mechanisms which organise interactions be-
tween different neurons. Third, in previous correlation
studies in this area we found that a high percentage of
cells is firing synchronously in response to a stimulus
(Freiwald et al., 1998). This result implies that the
probability to find interactions between LFP signals
should be high, since they are the manifestations of
coherently firing local groups of neurons.

2.1.1. Beha6ioural procedure
Two male macaque monkeys (Macaca mulatta) were

trained to perform a visual fixation task (Wurtz, 1969).
This task required each monkey to maintain fixation at
a spot of light with a diameter of 0.3° that appeared on
a CRT screen at a distance of 57 cm or 114 cm to the
eyes. Within 3 s after the appearance of the light spot
the monkey had to start fixation and subsequently press
a lever. Fixation had to be maintained for an interval of
5–7 s after which the light spot dimmed slightly and the
monkey was required to release the lever within 500 ms.
Successful performance of each trial was rewarded with
a drop of juice or water, and after a 2 s waiting period
the next trial was started. If the animal made an eye
movement of more than 0.7° away from the fixation
spot while the lever was pressed, or if it released the
lever before the dimming period, the trial was aborted
and a prolonged waiting period of about 4 s started
without a reward. After implantation of the head
holder, the animal’s head was restrained during training
and recording sessions, and eye movements were moni-
tored with an infrared eye-tracking system.

2.1.2. Surgery
Each monkey was implanted surgically under aseptic

conditions with a head holder and a recording cylinder
of 20 mm diameter. Anaesthesia was induced with an
injection of ketamine (10 mg/kg, i.m.), and after tra-
cheal intubation continued with 1–3% isofluorane in
oxygen/nitrous oxide (30/70). To aid the positioning of
the recording cylinder, the monkeys had been scanned
before the surgery with magnetic resonance imaging
(MRI), and the stereotaxic co-ordinates of STS and
PMTS had been determined using the BRAINVOYAGER

software (Goebel, 1996). The vertically oriented cylin-
der was centred above the estimated AP position of the
anterior end of the PMTS. Head holder, cylinder, and
screws were fixed and interconnected with dental
acrylic. A small craniotomy of 2 mm diameter was
placed in the centre of the cylinder. Postoperative treat-
ment included systemic application of antibiotics for 5
days.

2.1.3. Recording procedure
Local field potentials (LFPs) and multi- or single-unit

activity were recorded in the posterior part of the
inferotemporal cortex (TE), immediately anterior to
area TEO with two to four varnish-coated tungsten
microelectrodes. The impedances of the electrodes were
1–2 MV at 1 kHz. The electrodes were advanced
independently through a 23 gauge guide tube. Initially,
a short guide tube was used to record the depth profile.
The correct location for recording sites was determined
from the transitions through layers of cortex, white
matter and sulci and from the response properties of
the neurons encountered. Based on these results, a
longer guide tube was chosen to ensure the final posi-
tioning of the electrodes inside the target area. Its tip
was located 7 mm above the closest point of the
recording area. To place the electrodes for simultaneous
recordings from spatially separate columns in TE they
were slightly bent on the last millimetres before their
tips and oriented to move in slightly different direc-
tions. This resulted in differences of travelling distances
of the electrodes of 2 mm or more. The separation of
the recording sites could then be estimated to be at least
equal to this difference of travelling distances. Only
recording sites with a minimal spatial separation of 2
mm or more were considered for further analysis. This
distance is four times the spatial range of LFPs (:500
mm) because of volume conductance (Schillen et al.,
1992). Therefore, synchronisation of any two simulta-
neously recorded time series is very unlikely the trivial
result of current spread from a single source to these
two recording sites.

The signal from each electrode was amplified by a
variable factor, filtered with a bandpass (1–300 Hz) to
extract the local field potential and a second bandpass
(0.5–4 kHz) to extract action potentials. The field
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potential data was then A/D converted with a sampling
rate of 512 or 1024 Hz (A/D converter board DT
2821-G (DataTranslation)) which was controlled by the
Discovery (DataWave) data acquisition system and
stored to disk. No online analysis was performed dur-
ing electrode positioning or data acquisition to avoid
any bias in the selection of recording sites.

The correct location of the recording sites in poste-
rior part of area TE has been histologically verified in
one of the experimental animals.

All procedures used in this study were performed in
accordance with the guidelines for the welfare of exper-
imental animals issued by the federal government of
Germany and conformed to the guidelines of the Na-
tional Institutes of Health for the care and use of
laboratory animals.

2.1.4. Generation of 6isual stimuli
Light stimuli were generated on a CRT display with

a 1024×768 pixel resolution, subtending a visual angle
of 35°×26° in the case of 57 cm monitor distance to
the eyes and 18°×13° in the case of 114 cm monitor
distance. The monitor operated with a frame rate of 80
Hz (non-interlaced). This rate is well above the tempo-
ral resolution of macaque cones (Boynton and Baron,
1975). Independent control measurements in area MT
had previously shown (Kreiter and Singer, 1992), that
the 80 Hz frame rate does not influence the temporal
structure of the spike train.

The stimulus set consisted of fractal patterns
(Miyashita et al., 1991) and pictures of animals and
plants. Sizes ranged from 2° to 10° of diameter and
luminance from 1 to 4 cd/m2 with a background illumi-
nation of 0.1 cd/m2. The five pixel lines closest to the
borders of each picture were reduced in luminance to
avoid sharp luminance contrasts. Stimulus and presen-
tation positions were chosen so that responses were
elicited in at least one of the recording sites. The
stimulus was presented in one of two temporal schemes.
In the first, the stimulus was turned on 1 s after trial
onset and stayed on for 4 s until the end of the trial. In
the second scheme, two stimuli were presented subse-
quently at the same location with presentation and
inter-picture delay times of 1 or 1.5 s.

2.2. The analysis of electrophysiological data

2.2.1. Data processing
For all the field potential data recorded, power spec-

tra were computed. These showed that there was very
little power beyond 100 Hz in the data. To save on
computer time for the following computations, the
signals were therefore resampled with 200 Hz by Cubic
spline interpolation (with the tension parameter s=
1.0). Whenever necessary, digital notch filters were ap-
plied to remove 50 Hz line or 80 Hz monitor artefacts

(before the resampling of the data). All data were
z-transformed by subtraction of the mean and division
by the standard deviation (SD). Therefore, in what
follows, the SD is always equal to one.

2.2.2. Local Linear Non-linear Autoregression
(LLNAR)

We will now proceed to describe the LLNAR model
as a generalisation of linear Autoregression. For linear
Autoregression, the estimation of the model described
in Eq. (4) is carried out by least squares, that is by
finding the coefficients ak that minimise the estimated
innovation variance s2

x�X:

Ex�X
LIN= %

Nt

t=1

�
xt− %

p

k=1

ak · xt−k

�2

(10)

Thus, the linear model assumes that whatever the
previous state Xt may have been, the Autoregressive
coefficients ak are constant.

In order to model non-linearity, assume that the ak

depend on the Xt. Thus, a different linear regression
model is assumed for each point of the state-space
(Tong, 1990). This allows flexible modelling of many
types of non-linear systems. The coefficients ak(X) are
estimated by a ‘local regression’ (Fan and Gijbels,
1996) which gives greater weight to those data pairs
�xt, Xt� with delay matrices near X. This is achieved by
modifying Eq. (10) into the following expression:

Ex�X
LLNAR= %

Nt

t=1

�
xt− %

p

k=1

ak(X) · xt−k
�2

Kh(
X−Xt
)

(11)

where Kh(x)=exp
�

−
1
2
*x

h
*2�

is a Gaussian shaped

weighting function. The ‘spread’ of the weighting de-
pends on h, which we shall term the ‘bandwidth of the
local linear smoother’ or simply ‘bandwidth’ (Marron,
1992). The bandwidth h is related to ‘effective degrees
of freedom’ of the nonparametric fit (Hastie and Tib-
shirani, 1990). When h is large the number of ‘effective’
parameters is that of the linear model, p. When h is
small then the number of effective parameters increases.

This is the Local Linear Non-linear Autoregressive
time series model (LLNAR), designated as such be-
cause it is approximately linear in the neighbourhood
of a given previous state of the system. Note that as
h�� then LLNAR models reduce to the ordinary
Autoregressive model that is therefore included as a
specific case. This model has been shown to adequately
describe non-linear characteristics of EEG data (Her-
nàndez et al., 1996).

The model depends on the selection of the bandwidth
h and also on the number of delays p to be used as
predictors. At first thought these could be selected by
estimating the usual variance of the prediction error
(using the state dependent Autoregressive coefficients):
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ŝx�X
2 =

1
Nt

%
Nt

t=1

�
xt− %

p

k=1

âk(Xt) · xt−k

�2

(12)

where for any population quantity c, ĉ will denote its
estimator.

However, Eq. (12) is a biased estimator since the data
predicted is included in the ‘training set’. In fact, it is
zero when h is zero since then each observation is
predicted by itself!

A number of techniques have been suggested for
model order determination including AIC, BIC, FPE
(for a review see Tong (1990)). However, Yao and
Tong (1994) have argued in favour of using the cross-
validation error (CVE) as a goodness of fit measure for
tuning model parameters in non-linear time series.
From the literature of nonparametric regression estima-
tion it is well known that CVE avoids overfitting
(Hastie and Tibshirani, 1990). In the case of the LL-
NAR model CVE is a function of the model order p
and the bandwidth h, this functional relation being
denoted as CVE(p, h). Yao and Tong (1994) and Bell et
al. (1998) have carried out simulations that demonstrate
that the CVE performs well as an order determination
procedure using local polynomial regression, even in
the case when the data is actually linear.

The CVE is an unbiased estimate of the prediction
error obtained by the following procedure. Successively
each pair �xt, Xt� is deleted from the complete sample,
the LLNAR model is fitted, and using this model a
prediction is obtained for the deleted data pair. The
average square of the resulting residuals is the CVE. An
examination of CVE(p, h) for a suitable set of values
will indicate not only the optimal bandwidth h, but also
the optimal choice of p. Typically CVE(p, h) is larger
for small p when the order of the model is not high
enough to describe the data. Then as p increases this
measure is smaller until overfitting occurs, in which
case the value of CVE increases as prediction perfor-
mance decreases. In a similar fashion CVE is high when
h is too large — unless the linear model is adequate.
For nonlinear systems CVE decreases until it becomes
too small for good generalisation performance between
the data points. The CVE(p, h) function therefore
shows a global minimum which is used to select p and
h.

We calculate CVE(p, h) for all values of p from 1 to
20 and for h defined on a logarithmically spaced grid in
the range 0.01 · s · 
p5h54 · s · 
p, where s is the
standard deviation of the time series to be examined.
Additionally, the CVE for h�, h=� (linear model) is
also computed. (pmin, hmin) are the values for which the
CVE function attains its minimum, which will be de-
noted by CVE(pmin, hmin), CVE(pmin), CVE(hmin) or
simply CVE according to the parameter that is being
discussed.

2.2.3. Test for non-linearity in time series
In this section a novel test for assessing linearity of

time series is proposed. In the fitting procedure de-
scribed just above hmin=h� is an indication that a
linear model fits the time series best. When hmin"h�,
then the following procedure is carried out. A series of
surrogate time series are generated using the linear
model by means of the ‘wild bootstrap’ technique
(Mammen, 1999). Essentially, this technique generates
artificial time series using the linear Autoregression
equation. For the generation of each new realisation a
new innovation time series is obtained by randomising
the residuals of the linear fit. The set of the CVE of the
surrogate data defines a bootstrap empirical probability
distribution that characterises the null hypothesis. If
CVE(pmin, hmin) is lower than a prespecified (small)
proportion of the bootstrapped linear CVE then the
hypothesis of linearity is rejected. Specifically in this
paper, linearity was rejected if CVE(pmin, hmin) was
smaller than the fifth percentile of the logspline esti-
mated distribution function (see below) of the CVE of
the surrogate data (P value of 0.05).

2.2.4. Multi6ariate regression
The LLNAR can be extended to encompass non-lin-

ear multivariate regression models that generalise Eq.
(2). The non-linear equivalent to model Eq. (5) is fitted
by the general procedure described in the previous
section but applied to the pairs �zt, Zt�, i.e. using the
past of both series one and two. Thus, the LLNAR
version of prediction of y1,t by the complete delay
matrix Zt is given by

Ex�Z
NONLIN= %

Nt

t=1

�
xt− %

p

k=1

ak(Z)xt−k+ %
r

q=1

bq(Z)yt−q
�2

· Kh(
Z−Zt
) (13)

As in the linear case, the number of lagged values for
series two r, does not necessarily have to be the same as
p. In this paper the value of p obtained from the
regression of a time series on its own past is taken to be
fixed. Past values of series two are then added if they
lower the CVE. Thus, CVE is used in this multivariate
regression for two purposes, for determining the value
of r (how many past values of series two are necessary)
and also for determining the optimal smoothing
parameter CVE(rmin, hmin) for the Local Linear regres-
sion. This provides valuable information about the
influence of series two on one. If the CVE is not
decreased by adding past values of series two, then one
may conclude that this series does not influence series
one. Additionally, an examination of the effect of the
bandwidth on CVE(rmin, hmin) by means of the proce-
dure outlined in the previous section is a test for the
linearity of the interaction.
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2.2.5. Non-linear Granger influence measure
If past values of series two contribute to the predic-

tion of series one, then it is possible to use the LLNAR
framework for a quantitative evaluation of Granger
causality. Define:

ŝx�Z
2 = %

Nt

t=1

�
xt− %

p

k=1

âk(Z)xt−k+ %
r

q=1

b. q(Z)yt−q

�2

(14)

Then, the non-linear measure for Granger Causality
based on LLNAR is:

ILLNAR(y�x)= ln
�ŝx�X

2

ŝx�Z
2

�
(15)

Note that this measure includes the linear measure of
influence as a special case when the bandwidth of the
LLNAR is set to infinity.

According to Bell et al. (1998) the significance of the
influence measure was tested by generating a bootstrap
sample under the null hypothesis. This sample was
obtained by the following procedure. Separate LLNAR
models are fitted to each time series. Then, using the
wild bootstrap procedure described above, independent
pairs of surrogates time series are generated for both
series one and two. Under these conditions stochastic

independence of both series is ensured and in this case
the population influence measure should be by con-
struction zero. The actual influence measures are calcu-
lated for each pair of bootstrapped surrogates and a
histogram of the influence measures is constructed. In
this paper the null hypothesis of no influence was
rejected if the observed influence measure was greater
than the 95th percentile of the logspline estimated
distribution function (see below) of the surrogate data
(P=0.05).

2.2.6. Assessment of significance of results
All significance testing was carried out using esti-

mates of the distribution under the null hypothesis
obtained by means of the bootstrap (Efron and Tibshi-
rani, 1993). The number of bootstrap samples always
was larger than 700. Instead of using the raw his-
tograms for determining critical values of the null dis-
tribution, estimate of this density function was obtained
using the logspline technique of Kooperberg and Stone
(1991) that allows better estimates of tail probability
densities. The critical value for a one sided test at a
given P value (in our case P=0.05) is the 1−P percen-
tile of this distribution. All figures of significance tests
in this paper show the raw histogram, the superimposed
logspline density, the critical value for the one sided
test, as well as the actual values of the test statistics.

3. Results

3.1. Results for test time series

The methods developed above were applied to two
test data sets, and afterwards to LFP data. For the first
test a set of 40 time series with a length of 600 data
points were generated from a bivariate linear Autore-
gressive model with p=2. Half the time series were
generated as interdependent by construction of the
autoregression matrices. The other half was generated
as a set of independent time series. In all 40 cases the
type of LLNAR model selected corresponded to a
bandwidth of infinity, i.e. the linearity of the model was
correctly identified. Additionally, the presence or ab-
sence of influence was correctly detected in all
instances.

As a second test of the techniques described here, a
recording of a spike and wave EEG from an epileptic
patient with complex partial seizures was selected for
analysis. This is a well studied time series which has
been demonstrated to be highly non-linear by many
different techniques (Valdes et al., 1999). Fig. 1 shows
data from two channels (C3 and C4 of the 10/20
system) of the simultaneously recorded time series.
Clinical and neuro-imaging data indicated the existence
of a primary focus in C3, which propagates to C4.

Fig. 1. Test series for analysis of non-linear dynamics. Two simulta-
neously recorded EEG channels (average reference) from an epileptic
patient with complex partial seizures exhibiting spike and wave
discharges. Each recording is scaled to zero mean and SD 1. Record-
ings of 3 s duration from electrode position C3 (solid line) and C4
(dashed line) of the 10/20 system are shown. Clinical and neuro-imag-
ing data indicated the existence of a primary focus in C3 which
propagates to C4. The temporal lag between the two signals, C3
leading over C4, can be seen. The best fit to the signal in C4 (as chosen
by minimising the crossvalidation error, CVE=0.0043) was obtained
by using a Local Linear Non-linear Autoregressive model (LLNAR)
which depended on 11 time lags (corresponding to 55 ms) and used a
Gaussian kernel with bandwidth h=0.65. Adding five values of the
past of C3 (25 ms) to the model led to a significant decrease of the
CVE to 0.0033 with a bandwidth h=1.10. Series C3 achieved a CVE
of 0.0039 also for 11 lagged values with a bandwidth of 0.99.
However, adding five past values of C4 only led to an insignificant
decrease of the CVE to 0.0034 with a bandwidth h=1.09.
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Fig. 2. Results of the test for non-linearity for the Spike and Wave
data (C3). In this figure, and all other figures for statistical tests, the
histogram of the test statistic for the null hypothesis obtained by
means of the bootstrap is shown as a probability density distribution
(p.d.) together with a logspline estimate of the p.d. superimposed as
a curve. In this case the test statistic is the CVE. The distribution of
the null hypothesis is obtained fitting the LLNAR to linear surrogate
time series (bootstraps). The histogram indicates the range of varia-
tion of CVE for the linear model. The logspline density estimate is
used to calculate the critical value for rejection of the null hypothesis
at the P=0.05 level. This level is indicated by a vertical line. The
diamond indicates the CVE for a linear fit to the actual data. The
triangle indicates the CVE for the non-linear model. Note that the
CVE for the non-linear model is significantly lower than the range of
variation of CVE for the linear model providing evidence that the
analysed EEG data are indeed a non-linear time series. Similar results
were obtained for C4 (not shown).

trated in Fig. 3A, which shows that the influence mea-
sure of the non-linear model (upwards pointing
triangle) is significantly higher than expected by chance.

Fig. 3. Significance test of the influence measure between the signals
shown in Fig. 1. The analysis of the influence of C3 on C4 is shown
in A, the influence analysis of the reverse direction (C4�C3) in B.
Conventions for the figures are as described in Fig. 2. In this case,
however, the test statistic is the influence measure, I(y�x). Rejection
of the null hypothesis of no influence occurs when the influence
measure of the actual data is larger than the critical value for
P=0.05 (indicated by a vertical line in A and B) of the logspline
density estimate (solid line) of the surrogate data constructed to be
independent. Shown in these figures are the histograms of boot-
strapped influence measures for surrogate time series constructed to
be independent, thus approximating the null hypothesis of no influ-
ence. A: The upwards pointing triangle on the right marks the value
of the estimated influence of C3 on C4 based on the non-linear
model. This value is significantly larger than would be expected by
the null hypothesis of no influence. Thus, the null-hypothesis of no
influence can be rejected. The downwards pointing triangle on the left
marks the value of the estimated influence in the same direction
(C3�C4), but based on the linear model. In this case, the null-hy-
pothesis cannot be rejected. Thus, a directed influence could only be
inferred from the non-linear, but not from the linear model. B: The
influence of C4 on C3 was insignificant both in the linear (downwards
pointing triangle) and the non-linear model (upwards pointing trian-
gle). Thus, no past value of C4 was able to decrease CVE of C3
significantly. Taken together, this analysis suggests a uni-directional
non-linear influence of deviation C3 on C4.

A p of 11 time lags corresponding to 55 ms of the
signal’s past was necessary to adequately fit the signal
from C4. The bandwidth hmin was found to be 0.65,
which is quite low and indicates that the signal might
be a non-linear one. The best fit to signals in C3 was
obtained using p=11, indicating an equally complex
signal. In this case an hmin of 0.99 was obtained, which
is similar to that of C3.

Using the new non-linearity test both signals were
found to be non-linear. This is illustrated in Fig. 2 for
the data from deviation C3. This figure shows that the
CVE for the LLNAR model using hmin (marked by the
triangle in Fig. 2) was less than the critical value for
rejection of the null hypothesis of linearity at the P=
0.05 level (vertical line) and is outside of the range of
crossvalidation errors for the surrogate time series of
the linear model (histogram), indicating a significant
difference between the two models. Thus, the time
series should be considered to be a non-linear one.
Similar results were obtained for C4.

The results obtained with the non-linear influence
measures were consistent with the expectations men-
tioned above. Five lagged values of C3 did improve the
crossvalidation error of C4. This conclusion is illus-
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Fig. 4. Examples of local field potential (LFP) data obtained from the
posterior part of area TE. Two simultaneously recorded data seg-
ments of 3 s duration each are shown in parts A and B. While phases
of oscillatory activity can be observed (maybe most clearly in the
interval between 1700 and 2200 ms in A), the overall appearance of
this data is much more irregular than that in Fig. 1. The dominant
frequencies of the data are in the alpha and beta frequency bands,
while less power is contained in lower frequency bands. The best fit to
the LFP shown in A (as chosen by CVE) was obtained by using a
LLNAR which depended on 9 time lags (corresponding to 45 ms)
and used a Gaussian kernel with bandwidth h=3.127. The best fit to
the signal in B was obtained using 12 past values (corresponding to
60 ms) and h=13.81.

3.2. Results for LFP data

Data from six different experiments have been
analysed. From each of these data sets a random
sample of 20 sweeps was selected to perform the tests of
non-linearity and influence. An example of the general
appearance of LFP signals from area TE is shown in
Fig. 4. The time series data appear to be more irregular
than that of Fig. 1 in the sense that a repeating under-
lying pattern is hardly visible. Oscillatory episodes can
nevertheless be observed. A frequency analysis (not
shown) revealed that most of the power of the signal is
within the alpha and beta frequency bands, while the
contribution of lower frequencies is much less
pronounced.

The number of lagged past values needed to con-
struct adequate Autoregressive models varied from five
to 12. Thus, the prediction of a given data point had to
be based on the ‘history’ of the preceding 25–60 ms. A
p value of 12 is identical to the maximum considered in
our calculations for reasons of computational effi-
ciency. In at least some of these cases of maximal
model length, the inclusion of even more past values
might have improved the Autoregressive model.

The minimum of CVE was h� in almost all cases.
Thus, for most of the LFP time series, the linearity
hypothesis could not be rejected. This result is shown in
Fig. 5 for the example time series of Fig. 4A. The CVE
for the LLNAR model using hmin (indicated by the

Fig. 5. Results of the test for non-linear autoregression for LFP data
shown in Fig. 4A; conventions as in Fig. 2. The CVE of the linear
model (diamond) and the CVE of the non-linear model (triangle) are
very similar and well within the histogram showing bootstrap estima-
tions of the variability of CVE for the linear model as well as the
logspline estimate of the probability density. Therefore, both are
much larger than the critical value for P=0.05 indicated by a vertical
line. The null hypothesis of linearity cannot be rejected. Similar
results were obtained for the LFP data shown in Fig. 4B. Thus, the
LFP data should be considered to be linear.

However, based on the linear model (downwards point-
ing triangle), no significant influence was detected. In
the case of C3, also five lagged values of C4 improved
the CVE. In this case (Fig. 3B), however, the test for
the influence measure was not significant. Thus, for this
set of data the conclusion is, that a unidirectional
non-linear influence was present from C3 to C4 but not
vice-versa.
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Fig. 6. Significance test of the influence measure between two simulta-
neously recorded LFP signals, conventions as in Fig. 3. The test
statistic is the influence measure. The two signals of the recording
sites will be referred to as channel 1 and channel 2. A and B show the
significance tests for the influence of channel 1 on channel 2 (A) and
for the influence of channel 2 on channel 1 (B). A: The estimated
influence of channel 1 on channel 2 is significant at the P=0.05 level.
B: The estimated influence value for the reverse direction is contained
within the distribution of bootstrapped values. Therefore, the null-hy-
pothesis (no influence of channel 2 on channel 1) cannot be rejected.
Taken together these findings indicate that the interactions between
channels 1 and 2 are uni-directional (channel 1� channel 2).

data shown in Fig. 4 for example did not show any
signs for directional interactions. An example of a
significant directed influence between two simulta-
neously recorded LFP data segments is shown in Fig. 6.
The test of the estimated influence value of channel 1
on channel 2 indicates that this influence is significant
(Fig. 6A), while the influence in the reverse direction is
insignificant (Fig. 6B). The interaction therefore is a
uni-directional one.

4. Discussion

The major points emphasised in this article are:
1. The introduction of non-parametric non-linear Au-

toregressive methods, originally developed for
econometrics, for the analysis of neural signals. A
significance test for non-linearity of time series is
presented.

2. The introduction of particular methods for detecting
the non-linear character of neural time series and
the presence of non-linear interactions. It is now
possible to explore these non-linear characteristics
of neural data with methods (LLNAR) that reduce
automatically to linear techniques, if the data is
linear.

3. The introduction of a measure for both linear and
non-linear Granger causality and a test for its
significance.

4. The demonstration of the importance of non-linear
modelling. In particular, it is shown that poor esti-
mates of causal relations may result from applying
linear methods to non-linear data (Fig. 3).

5. Applying these analysis tools to LFP data from
macaque area TE yielded three main findings. First,
directed interactions have been found in area TE.
Some of these interactions were uni-directional, oth-
ers bi-directional. Second, the construction of ade-
quate Autoregressive models required the inclusion
of up to 12 lagged values. Thus, the present state of
the system is influenced by its own past of up to 60
ms duration. Third, all the LFP signals could be
described by linear models.

4.1. Local field potential analysis

To our knowledge, the findings presented here are
the first to provide evidence for the existence of direc-
tional interactions in the macaque cortex. Specifically
we have found that within the same cortical area, one
synchronously active neural population, which is gener-
ating the local field potential we are analysing, is exert-
ing an influence on a second such group at another site.
The existence of asymmetrical interaction patterns of
neural groups within the same cortical area is quite
surprising, given the fact that both recording sites are

triangle) was very similar to that of the linear model
with h� (indicated by the diamond) and is contained
within the distribution of crossvalidation errors for the
surrogate time series of the linear model shown by the
histogram in Fig. 5. This indicates that the time series
should be considered to be linear. In the few instances
in which the minimum of CVE was not approaching
h�, the test for non-linearity always showed that the
null hypothesis of linearity could not be rejected. Thus,
all the observed data could be modelled as linear time
series.

Directional interactions, both uni- and bi-directional
ones, between pairs of LFP recordings have been
found. However, not all pairs of simultaneously
recorded LPFs exhibited this form of dependency. The
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located at the same level of the processing hierarchy
and therefore no a priori expectation existed which site,
if any, would exert a causal influence on the other. The
existence of directional interactions would have been
hard to reveal with other methods, e.g. classical cross-
correlation techniques. In the examples analysed here,
the cross-correlograms did not give any indication for
an asymmetrical relationship as we have observed using
influence measures based on the LLNAR technique.
Thus, a potentially very important aspect of the rela-
tionship between the activities of neural populations
would have remained unnoticed.

The finding of directional interactions between spa-
tially separate neural groups purports to a possible role
of the long range horizontal connections coupling dif-
ferent parts of the same visual area for directly convey-
ing signals from one part of the area to another one.
This idea is compatible with the view that these connec-
tions do not influence classical receptive field proper-
ties, but are rather related to the temporal organisation
of the signal flow in cortical networks (Singer and
Phillips, 1997). The existence of directed interactions
between groups of synchronously firing populations of
cells represents further support for the hypothesis out-
lined in the introduction, that temporal activity pat-
terns are of functional relevance for visual information
processing. Here, neural groups seem to be dynamically
organised in a way that the synchronous activity of one
group has a causal effect on the other one. An extensive
study of the properties of directed influences and their
relationship to stimulus properties and behavioural
states of the animal shall be performed to clarify the
validity of our theoretical considerations.

Our second main finding is that each state of a
coherently firing group in area TE depends upon past
values of up to 60 ms duration. This time period, which
we will also refer to as the ‘memory duration’ or
‘memory span’ of the system, is similar for the depen-
dency of the signal on its own past and for the influ-
ences exerted by other neural groups. A memory
duration of 60 ms is long compared to the 5–8 ms
found in a study of directional influences in the cat
visual cortex (Bernasconi and König, 1999) and com-
pared to time constants of cortical pyramidal cells
(Koch et al., 1996). However, in the following we will
point out that a) our result does fit well to earlier
findings in area TE, which is part of what has been
called ‘the slow brain’ (Nowak and Bullier, 1997) based
on response latency measurements, and b) by compari-
son with results from other cortical areas indicate a
possible relationship with oscillation frequencies.

Long lasting linear dependencies within and between
spike trains of individual neurons in area TE have been
revealed with auto- and crosscorrelation analyses
(Gochin et al., 1991; Freiwald et al., 1998). In these
studies, broad correlation peaks have been described

whose half width could even extend to 200 ms and
more. Thus, the occurrence of a spike of one cell was
found to influence the likelihood of a second cell for
eliciting a spike even after this long temporal delay. An
analogous finding was made for auto-correlograms,
showing that similar dependencies also exist within a
single unit spike train (Freiwald et al., 1998). Thus, the
statistical dependencies of single unit activities are par-
alleled by similar phenomena at the population level,
suggesting that neurons are firing in synchrony to exert
influences at a larger scale onto other parts of the
system.

A further observation might link the duration of
memory, the value p, of the Autoregressive model to
the dominant frequencies in the cortical area the LFP
signals were recorded from. In area TE, the field poten-
tial signals often contain most of their power in the
higher alpha and lower beta frequency range. There-
fore, the duration of one such oscillatory cycle is
slightly longer than the memory duration found in our
data. Interestingly, a study aimed to detect coherencies
in data from cat area 17, where higher frequencies in
the gamma range are dominant (Pawelzik, 1994), found
values for the duration of memory of about 25 ms —
a value at the order of one oscillatory cycle. However,
this inverse relationship of different dominant frequen-
cies and memory duration remains speculative, since
different methods were used to assess the latter quan-
tity, and at least in our case, more data are needed to
prove the existence of such a relationship. Yet, this
observation might help to explain the difference of our
p values to those found to be optimal for fitting linear
Autoregressive models to LFP data from cat visual
cortical areas a17 and a7 (Bernasconi and König, 1999).
In this study, typically only values from the past 5–8
ms had to be considered. Since species and task differ-
ences might contribute to this discrepancy, a compara-
tive study of simultaneous recordings in different visual
cortical areas of different processing streams in the
same animal might be a worthwhile endeavour to fur-
ther investigate memory values and to assess their
possible functional implications. However, high p val-
ues are in many cases linked to a complex structure of
frequency domain features, with possibly narrow band
peaks, an aspect which should also be the subject of
future enquiry.

Our third main finding is that all LFP signals appear
to be linear as well as the influences which exist be-
tween two such signals. Generally, the existence of
dependencies detected by linear methods does not imply
that the dependencies are of a linear nature. However,
for the LFP we have been able to reach this conclusion
by using the new tests for non-linearity described
above.

The exclusive presence of linear dynamics in LFP
data from area TE may seem paradoxical in view of the
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fact that most underlying neural phenomena are known
to be non-linear. However, many systems composed of
highly non-linear components, e.g. electronic devices,
exhibit an overall linear type of behaviour. What has
been shown here, is that the system under study can
behave in a linear fashion. This finding does not pre-
clude the possibility that different modes of operation
would appear in other contexts, e.g. different be-
havioural demands. Such different modes of behaviour
could be regulated by the amount of noise in the
system. It is well known that a deterministic non-linear
system which is perturbed by an increasingly higher
level of stochastic factors may reach the point in which
all specific dynamical structure is lost. With lower levels
of noise however, this structure can reappear.

Probably by averaging over the signals generated by
several neural populations, each exhibiting a different
form of non-linear temporal dynamics, a similar effect
of hiding the underlying dynamical structures might
occur. In this case however, increasing the size of the
ensembles recorded from should further reduce the
signal’s complexity, while non-linearities at the level of
the EEG have been reported (Elbert et al., 1994),
including the pathophysiological findings presented
here (Figs. 1 and 2).

Yet another problem for identifying non-linear brain
activity should be considered. Different activity modes
might not only be shown by different neuronal popula-
tions, but also by the same population in successive
intervals. This kind of switching between a coherent
oscillatory and a stochastic phase of activity has been
found in cat area 17 (Bauer and Pawelzik, 1993;
Pawelzik, 1994). By fitting a model to time intervals
containing more than one of these phases, the noise of
stochastic phases might degrade the process of system
identification.

To summarise, the analyses performed in this study
should be applied to signals recorded at different spa-
tial scales, preferably from the single cell level to the
level of EEG recordings. Second, they could be com-
bined with the above-mentioned methods for identify-
ing phases with different activity patterns. From a
pragmatic point of view, linear signals have several
advantages over non-linear ones. Maybe the most im-
portant one besides reduced computational demands
for computing the influence measure is the following.
When dealing with linear Autoregressive models, the
influence measure can be subjected to a frequency
decomposition procedure (Geweke, 1984; Sameshima et
al., 1998; Bernasconi and König, 1999). It is then
possible to evaluate the contribution of different fre-
quencies to an observed directed influence, which is of
special interest in trying to relate influence measures to
the frequency content of the signals under study.

4.2. Directions for future work

The present results indicate that the general frame-
work outlined above allows an examination of the
non-linearity of neural time series and their interac-
tions. However, these techniques must be refined in
several directions.
1. When modelling non-linearity, one is immediately

afflicted with the ‘curse of dimensionality’ some-
thing that is quite prominent in non-parametric
modelling. Three directions are possible to mitigate
this problem: additional structure may be imposed
on the non-parametric model by specifying additive
or multiplicative relations among sets of lags; subset
selection methods can be used to retain only those
time lags that have predictive value; specific para-
metric components may be incorporated into the
model in order to decrease the variability of the
estimators of non-linear influence as well as to en-
hance the interpretability of the resulting model.

2. This paper only considers influences between two
time series. The results of such an analysis can be
misleading since other neural structures may be
acting simultaneously on those being measured and
this may distort the analysis. The suggestion to use
measures of influence which are defined after the
effect of other time series is partialed out (Geweke,
1984) is currently being adapted to non-linear
Granger causality.

3. Furthermore, attempts are being made to generalise
the current framework to include non-stationary
neural time series. Another important extension of
the presented methods is a generalisation for the
analysis of point process time series which would
allow for the investigation of trains of single cell
spike trains.
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Finding the means to efficiently summarize electroencephalographic

data has been a long-standing problem in electrophysiology. A popular

approach is identification of component modes on the basis of the time-

varying spectrum of multichannel EEG recordings—in other words, a

space/frequency/time atomic decomposition of the time-varying EEG

spectrum. Previous work has been limited to only two of these

dimensions. Principal Component Analysis (PCA) and Independent

Component Analysis (ICA) have been used to create space/time

decompositions; suffering an inherent lack of uniqueness that is

overcome only by imposing constraints of orthogonality or independence

of atoms. Conventional frequency/time decompositions ignore the

spatial aspects of the EEG. Framing of the data being as a three-way

array indexed by channel, frequency, and time allows the application of a

unique decomposition that is known as Parallel Factor Analysis

(PARAFAC). Each atom is the tri-linear decomposition into a spatial,

spectral, and temporal signature. We applied this decomposition to the

EEG recordings of five subjects during the resting state and during

mental arithmetic. Common to all subjects were two atoms with spectral

signatures whose peaks were in the theta and alpha range. These

signatures were modulated by physiological state, increasing during the

resting stage for alpha and during mental arithmetic for theta.

Furthermore, we describe a new method (Source Spectra Imaging or

SSI) to estimate the location of electric current sources from the EEG

spectrum. The topography of the theta atom is frontal and themaximum

of the corresponding SSI solution is in the anterior frontal cortex. The

topography of the alpha atom is occipital with maximum of the SSI

solution in the visual cortex. We show that the proposed decomposition

can be used to search for activity with a given spectral and topographic

profile in new recordings, and that the methodmay be useful for artifact

recognition and removal.
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Introduction

The electroencephalogram (EEG) is the reflection upon the scalp

of the summed synaptic potentials of millions of neurons (Lopes da

Silva, 1987). Most investigators agree (Lachaux et al., 1999; Varela

et al., 2001) that these neurons self-organize into transient networks

(‘‘neural masses’’) that synchronize in time and space to produce a

mixture of short bursts of oscillations that are observable in the EEG

record. A statistical description of the oscillatory phenomena of the

EEG was carried out first in the frequency domain (Lopes da Silva,

1987) by estimation of the power spectrum for quasi-stationary

segments of data. More recent characterizations of transient oscil-

lations are carried out by estimation of the time-varying (or evolu-

tionary) spectrum in the frequency/time domain (Dahlhaus, 1997).

These evolutionary spectra of EEG oscillations will have a topo-

graphic distribution on the sensors that is contingent on the spatial

configuration of the neural sources that generate them as well as the

properties of the head as a volume conductor (Nunez, 1993).

The purpose of the present study was to attempt the decompo-

sition of multichannel time-varying EEG spectrum into a series of

distinct components or modes. In the parlance of modern harmonic

analysis (Chen and Donoho, 2001), we performed a space/frequen-

cy/time ‘‘atomic decomposition’’ of multidimensional data. In

other words, we assume that each neural mass contributes a

distinctive atom to the topographic frequency/time description of

the EEG, so that the estimation of these atoms is possible by means

of signal-processing techniques. Each atom will be defined by its

topography, spectral content, and time profile; in other words, by

its spatial, spectral, and temporal signatures. We expect that these

extracted atoms ultimately will allow the identification of the

corresponding neural masses that produce them.

There is a long history of atomic decompositions for the EEG.

However, to date, atoms have not been defined by the triplet

spatial, spectral, and temporal signatures but rather pairwise

combinations of these components. Some of the current procedures

for these analyses are reviewed below.

Space/time atoms: PCA and ICA

Space/time atoms are the basis of both Principal Component

Analysis (PCA) and Independent Component Analysis (ICA) as



Fig. 1. Graphical explanation of the PARAFAC model. The multichannel

EEG evolutionary spectrum S is obtained from a channel by channel wavelet

transform. S is a three-way data array indicated by channel, frequency, and

time. PARAFAC decomposes this array into the sum of ‘‘atoms’’. The kth

atom is the tri-linear product of loading vectors representing spatial (ak),

spectral (bk), and temporal (ck) ‘‘signatures’’. Under these conditions,

PARAFAC can be summarized as finding the matrices A = {ak}, B = {bk},

and C = (ck), which explain S with minimal residual error.
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applied to multichannel EEG. PCA has been used for artifact

removal and to extract significant activities in the EEG (Lagerlund

et al., 1997; Soong and Koles, 1995). A basic problem is that atoms

defined by only two signatures (space and time) are not determined

uniquely. In PCA, orthogonality is therefore imposed between the

corresponding signatures of different atoms. This, however, is a

rather nonphysiological constraint. Even with this restriction, there

is the well-known nonuniqueness of PCA that allows the arbitrary

choice of rotation of axes (e.g., Varimax and Quartimax rotations).

More recently, ICA has become a popular tool for space/time

atomic decomposition (Cichocki and Amari, 2002; Hyvarinen et

al., 2001). It avoids the arbitrary choice of rotation (Jung et al.,

2001). Uniqueness, however, is achieved at the price of imposing a

constraint even stronger than orthogonality, namely, statistical

independence. In both PCA and ICA, the frequency information

may be obtained from the temporal signature of the extracted atoms

in a separate step.

Frequency/time atoms: wavelet analysis

There are many papers on the decomposition of single-channel

EEG into frequency/time atoms. For this purpose, the Fast Fourier

Transformation (FFT) with sliding window (Makeig, 1993) or the

wavelet transformation (Bertrand et al., 1994; Tallon-Baudry et al.,

1997) have been employed. In fact, any of the frequency/time atomic

decompositions currently available (Chen andDonoho, 2001) could,

in principle, be used for the EEG. However, these methods do not

address the topographic aspects of the EEG time/frequency analysis.

Space/frequency/time atoms: PARAFAC

Gonzalez Andino et al. (2001) improved previous analyses

by analyzing regions of the frequency/time plane where a single

dipole model is an adequate spatial description of the signal,

thus incorporating topographic information. Topographic fre-

quency/time decomposition of the EEG was introduced by

Koenig et al. (2001), which is the first work to estimate atoms

characterized simultaneously by a frequency/time and spatial

signature. In their analyses, it was possible to extract physio-

logically significant activity in the EEG. However, in order to

achieve a unique decomposition, they imposed the mathematical

constraints that the combined frequency/time signatures of all

atoms were required to be of minimum norm and the spatial or

topographic signatures were required to have maximal smooth-

ness. These constraints have been found to be unnecessary for

unique topographic time/frequency decomposition, a fact that

has motivated the work described in this paper.

It has long been known, especially in the chemometrics

literature, that unique multi-linear decompositions of multi-way

arrays of data (more than two dimensions) are possible under very

weak conditions (Sidiropoulos and Bro, 2000). In fact, this is the

basic argument for Parallel Factor Analysis (PARAFAC). This

technique was proposed independently by Harshman (1970, 1972)

and by Carroll and Chang (1970) who named the model Canonical

Decomposition, and recently has been improved by Bro (1998)

who also provided a Matlab toolbox (available as of this writing at:

http://www.models.kvl.dk/users/rasmus/). In PARAFAC, for three-

way arrays, the data is decomposed as a sum of components

(corresponding to our ‘‘atoms’’), each of which is the tri-linear

product of one score vector and two loading vectors

(corresponding to our ‘‘signatures’’). The important difference
between PARAFAC and techniques such as PCA or ICA is that

the decomposition of multi-way data is unique even without

additional orthogonality or independence constraints.

Thus, PARAFAC can be employed for a space/frequency/time

atomic decomposition of the EEG. This makes use of the fact that

multichannel evolutionary spectra are multi-way arrays, indexed by

electrode, frequency, and time. The inherent uniqueness of the

PARAFAC solution leads to a topographic time/frequency decom-

position with a minimum of a priori assumptions.

Here, we use PARAFAC for the purpose of simultaneous space/

frequency/time decompositions. Previous applications of PAR-

AFAC to EEG data have analyzed only space/time, and some

additional external dimensions provided by subject and drug dose,

among other factors (Achim and Bouchard, 1997; Estienne et al.,

2001; Field and Graupe, 1991). A special interpretation of this

model is also the Topographic Components Model (TCM) (Möcks,

1988a,b), which gives justification for the PARAFAC model in the

context of evoked potentials analysis, based on biophysical con-

siderations (Möcks, 1988b). In this field, a relevant proof of the use

of TCM over PCA using only synthetic noiseless data was given in

Achim and Bouchard (1997).

To illustrate the usefulness of PARAFAC, we applied the

decomposition of time-varying EEG spectrum to the comparison

of resting EEG to that recorded while the subject performed mental

arithmetic. Mental arithmetic produces theta activity in the frontal

area and a suppression of alpha activity in the occipital area, while

the converse occurs when the eyes are closed in the resting

condition (Harmony et al., 1999; Ishihara and Yoshii, 1972; Sasaki

et al., 1996). The PARAFAC atomic decomposition should be able

to extract these components, localize them correctly, and detect the

corresponding level of activity in these bands in each physiological

state. Once estimated, the spatial and spectral signatures of the

identified atoms may be used to search for similar types of activity

in new data sets. Here, this procedure will be called ‘‘screening’’

for the presence of an atom.

Our focus is on space/time/frequency decompositions tailored

to the description of oscillatory phenomena. These are not the only

interesting phenomena in the EEG, transient activity being another

example. The methods described in this paper may be generalized

to this application by exchanging the basic dictionary that

describes oscillations.

This paper is organized as follows. We first describe the

experimental methods. Then, we consider the basic theoretical

development of the space/frequency/time atomic decomposition
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and the use of estimated factors to screen for activity in new data

segments. The results and discussion follow.
Methods

Data acquisition

Five male right-handed subjects (mean age 25.8 F 3.96 years)

that produced clear theta activities during a mental task were

studied in this work. All subjects signed an informed consent form

approved by the RIKEN Human Subject Protection Committee

before EEG recording. All subjects were required to concentrate,

for 3 min, on mental arithmetic (subtraction by serial 7 from 1000)

with closed eyes. They were asked the final residual number at the

end of the task. The resting EEG with closed eyes was also

recorded for comparison. During the recording, we provided no

visual nor auditory stimulation for the subjects.

EEG recordings were carried out with a standard 64-channel

system (NeuroScan Syn Amps Model 5083) referred to linked
Fig. 2. Spectral signature bk of atoms of Parallel Factor Analysis (PARAFAC) for

and alpha bands. The horizontal axis is frequency in Hz and the vertical axis is t
earlobes. The EEG data were sampled at 500 Hz and bandpass

filtered from 1 to 30 Hz.

Theory

In our application to EEG data, the data matrix S(Nd
� Nf

� Nt)
is the

three-way time-varying EEG spectrum array obtained by using the

wavelet transformation, where Nd, Nf, and Nt are the number of

channels, steps of frequency, and time points, respectively. For the

wavelet transformation, a complexMorlet mother function was used

(Jensen and Tesche, 2002; Kronland-Martinet and Morlet, 1987;

Tallon-Baudry et al., 1997). The energy S(d, f,t) of the channel d at

frequency f and time t is given by the squared norm of the

convolution of a Morlet wavelet with the EEG signal v(d,t)

Sðd; f ; tÞ ¼ Awðt; f Þ*vðd; tÞA2; ð1Þ

where the complex Morlet wavelet, w(t, f ) is defined by

wðt; f Þ ¼
ffiffiffi
p

p
rbexp � t

� �2� �
� exp i2pftð Þ with rb being the-
rb

each subject. Note the recurrent appearance of frequency peaks in the theta

he normalized amplitude.



Fig. 3. Temporal signatures, ck, of theta and alpha atoms of Parallel Factor

Analysis (PARAFAC) for a typical subject. The first five segments were

chosen randomly from the rest condition; the second five segments were

selected so as to contain typical theta bursts. Each segment is 1-s long,

containing 100 time frames. The horizontal axis is time t, and the vertical

axis is the value of ck, which is dimensionless.
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bandwidth parameter. The width of the wavelet, m = 2prb f is set to

7 in this study.

We closely follow here the detailed description of PARAFAC

found in Bro (1998). The basic structural model for a PARAFAC

decomposition of the data matrix S(Nd
� Nf

� Nt)
of elements Sdft is

defined as:

Ŝdft ¼
XNk

k¼1

adkbfkctk ð2Þ

The problem is to find the loading matrices, A, B and C, whose

elements are adk, bfk, and ctk. In our application, each component k

will be designated as an ‘‘atom’’ and the corresponding vectors

ak = {adk}, bk = {bfk}, ck = {ctk} will be the spatial, spectral, and

temporal signatures of each atom (Fig. 1). The uniqueness of the

solution is guaranteed when rank (A) + rank (B) + rank (C) z
2Nk + 2. As can be seen, this is a less-stringent condition than

either orthogonality or statistical independence (Sidiropoulos and

Bro, 2000). The decomposition (Eq. (2)) is achieved by finding

min
adkbfk ctk

kŜdft �
PNk

k¼1 adk bfk ctkk: Since the Ŝdft are spectra, this

minimization must be carried out under the non-negativity con-

straint for the loading vectors. This particular variant of PARAFAC

has been developed by Bro (1998). PARAFAC produces the vectors

ak(Nd
� 1), which is the kth component loading vector that can be

seen as topographical maps, bk(Nf
� 1) is the spectrum for kth

component and ck(Nt
� 1) is the temporal signature for component k.

The main advantage of this method is that it provides us with a

unique decomposition of the time-varying EEG spectrum

corresponding to the best model in the least-squares sense. The

only indeterminacy in the least-square solution is the order of the

atoms and the relative scaling of the signatures. On the other hand,

it has also been proved that if the data is approximately tri-linear,

then the algorithm will show the true underlying phenomena, if the

correct number of components is used and if the signal-to-noise

ratio is appropriate (Harshman, 1972; Kruskal, 1976, 1997).

An important point is the selection of the most appropriate

number Nk of components. Several methods have been developed

for this purpose only (Bro, 1998). The Core Consistency Diagnos-

tic (Corcondia) is an approach that applies especially to PARAFAC

models, and has been shown to be a powerful and simple tool for

determining the appropriate number of components in multiway

models. In this work, we will use not only Corcondia but also the

evaluation of systematic variation left in the residuals of the model.

Validation of the method

As described by Harshman (1984) and Bro (1998), the

validation of a particular analysis can be seen as part of the

analysis itself and can be divided into levels: zero-fit diagnostics

(related to data before fitting any model, selection of proper

model); one-fit diagnostics (validate the consistency of the

model applied); many-fit diagnostics (comparisons between

different models, use of statistical inferences on the results).

Given some general considerations of the PARAFAC modeling

of the time-varying EEG spectrum, we shall make a deeper

analysis of the appropriateness of this procedure following these

levels and the general guidelines for validating the application

of multi-way models given in Bro (1998).

The usual way to assess the multiway (three-way in this case)

nature of the data in study is the exploration of results provided by

bi-linear analysis of the data. In particular, the application of PCA
to the unfolded three-way array will provide a matrix of loadings in

which a global behavior can be detected, indicating the existence of

dimensional structure in the explored dimensions. For data similar

to those treated here, this is clearly shown in Estienne et al. (2001),

and with a more complete analysis in Field and Graupe (1991).

Another way of assessing the tri-linear structure of the data is by

means of the Core Consistency Diagnostic (Corcondia) (Bro, 1998;

Estienne et al., 2001). This is a tool provided automatically in the

implementation of PARAFAC and other related multi-way algo-

rithms contained in the Matlab Toolbox used here. Corcondia was

utilized for successfully demonstrating the presence of multiway

structure in our data.

In this work, we have chosen PARAFAC among several multi-

way models, (e.g., PARAFAC2, PARATUCK2, TUCKER1,

TUCKER3) (Bro, 1998). This is an application of Occam’s razor

as PARAFAC is the simplest and most restricted model. As we only

consider it in our analysis, whether other versions of PARAFAC or

TUCKER models can give better results in terms of explanation of

the systematic variation of the data and interpretability of the results

remains an open question.

On the other hand, other drawbacks of the application of

PARAFAC model include the need for careful preprocessing of

the data and for checking residuals, leverages and other parameters

in the search of constant factors, outliers, and degeneracy. We do

not detail these problems here, as such analyses appear in the

literature, e.g., exhaustive ways of exploring degeneracy and

model mis-specifications can be found in Field and Graupe

(1991). The Matlab Toolbox used here provided us of these tools

for many-fit diagnostics (residuals, leverages, Corcondia, conver-

gence, explained variation).

What is missing in the present study is a rigorous analysis of the

uniqueness of the model in our case, but it is well-known that

through the use of PARAFAC, uniqueness is almost always present.



Fig. 5. Maximum-intensity projections of the Source Spectra Imaging solution of the spatial signature, ak, of the theta atom for each subject.

Fig. 4. Spatial signatures, ak, for the theta and alpha atoms of Parallel Factor Analysis (PARAFAC) of a typical subject. In (a) and (b), each signature is

displayed as a topographic map; (c) and (d) are the corresponding Source Spectra Imaging solutions. The cross sections of brain were prepared for better

visualization of the maximally activated regions. These are illustrated with a normalized color scale of the magnitude of Jk.

F. Miwakeichi et al. / NeuroImage 22 (2004) 1035–1045 1039



F. Miwakeichi et al. / NeuroImage 22 (2004) 1035–10451040
Although a sufficient condition was given above, usually, unique-

ness can be assessed by checking the convergence of the algorithm

and the interpretability of the results. A strong sufficient condition,

but easier to verify, is that no two loading vectors are linearly

dependent.

Screening and artifact detection

PARAFAC can be used not only for extracting significant

activities from EEG, but also for searching for the presence of atoms

in a new data set, which were not used for estimating the loadings

and can be either from the same or from a different subject. If the

spatial and spectral signatures of an atom are fixed, they can be used

as templates for screening. Formally, after estimating atoms in a

training data set, this can be reconstructed as

Ŝ ¼ CðBA	 AAÞT ; ð3Þ

here, Bj	jA = [b1 	 a1b2 	 a2 . . . bnk 	 ank] is the Khatri-Rao

product of B and A, and represents the convolution of space and

frequency. XT denotes the transpose of matrix X. For the definition

of a template, not all atoms are necessary; that is, for the sake of

screening, atoms that are not of interest may be eliminated. Let BV
and AV be fixed spectral and spatial signatures (with some atoms
Fig. 6. Panels (a) and (b) illustrate the reconstructed decomposed component by V

two largest eigenvalues. Panels (c) and (d) are the reconstructed alpha and theta at

The first five segments were randomly selected from the resting condition; the sec

segment is 1-s long and contains 100 time frames.
possibly eliminated). The temporal signature, CV, can then be

estimated by using least squares in a new data set X,

CVT ¼ ðPTPÞ�1PTX; P ¼ ðBVA	 AAVÞT ð4Þ

P can be regarded as a template for screening for the presence of the

atoms of interest. The new temporal signature, CV, will then be an

estimate of the detected activities corresponding to each atom in the

new data set.

If certain atoms obtained by PARAFAC decomposition contain

artifact (e.g., eye movements, eye blinking, electromyogram, etc. . .)
their space/frequency reconstructions can be used as templates for an

artifact detector. The reconstruction, obtained by eliminating the

component that corresponds to artifacts, will be an artifact removal

method.

Inverse solution for the spatial signatures of atoms: source spectra

imaging

Each column ak of matrix A can be seen as the topography of

atom k. Thus, it would be desirable to obtain the sources inside the

brain that can produce these topographies to highlight more precise

anatomical details. The difficulty here is that the spatial signatures

are all positive values, as they are the differential topographic
arimax rotated Principal Component Analysis (PCA) corresponding to the

oms of PARAFAC decomposition in the frequency/time plane, respectively.

ond five segments were selected so as to contain typical theta bursts. Each
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profiles of EEG spectra, i.e., the variances of complex Fourier

coefficients, and therefore the inverse solutions in this case are not

the ordinary estimates for the current densities. However, a simple

exploratory analysis can be performed in which, under certain

assumptions and simplifications, the underlying sources for these

topographies can be obtained by an inverse solution. Furthermore,

these sources will be shown to be the spectra of electric current

densities.

The well-known relation between the electric current densities

inside the brain and the electric potentials measured by a set of

electrodes on the scalp is:

Vf ¼ KJf ð5Þ

Here we have written Eq. (5) directly in the frequency domain, i.e.,

Vf(Nd
� 1) and Jf(3Nv

� 1) are the vectors of Fourier coefficients of the

voltages and electric current density time series, respectively. Nv is

the number of voxels of a regular grid inside the brain. The matrix

K(Nd
� 3Nv)

is the electric lead field, which is unaffected by the

Fourier transformation. As the absolute value of the electric

potential has no physical meaning, the average value of voltages

was taken as the reference. From Eq. (5), we can find the spectra of

voltages as a = diag(VfVf*):

a ¼ diagðKJf J
*
f KT Þ ð6Þ

If we assume that there is no correlation between the current

densities in different voxels, i.e., Jf Jf * is a diagonal matrix, we

can obtain their spectra as c = diag(Jf Jf *). Eq. (6) then becomes:

a ¼ K�^2; ð7Þ

where K�^2 indicates the operation of squaring each element of the

matrix, K. This represents a linear relation between a (spatial
Fig. 7. Theta and alpha activities detected by the screening procedure, based on p

screening was applied for 1 min of continuous data sets in the resting and task co

alpha bursts in the task state, while the converse relationship holds in the resting
signatures obtained by PARAFAC decomposition), and the spectra

of current sources that generate the scalp voltages. For the sake of

simplicity, it may be assumed that the spectrum vector of the

current density has the same magnitude in all directions for each

voxel. Therefore, Eq. (7) may be rewritten as:

A ¼ MM ð8Þ

Here, matrix M(Nd
� Nv)

was obtained by averaging every three

columns of matrix K�^2, and l(Nx
� 1) is the spectrum of current

densities for each voxel.

From Eq. (8), the spectra of current sources can be found by

an inverse solution procedure. Note here that spectra a and l
are non-negative vectors, allowing us to solve Eq. (8) as a

minimum least squares problem under the non-negativity con-

straint for l. Eq. (8) is undetermined; thus, we shall constrain

the solution to be the smoothest one. In this case, the under-

lying sources (lk) for the topographic signature (ak) of atom k,

can be obtained from

Mk ¼ arg min
Mk z 0

Aak � MMkA
2 þ kALMk

N2 ð9Þ

where L is the discrete Laplacian operator as described in

Pascual-Marqui et al. (1994) and k is a regularization parameter.

In general, we shall call this approximation to the source

reconstruction for spectra of voltages the ‘‘Source Spectra Imag-

ing’’ (SSI) solution. Despite the assumption of independence of

electric current densities, finding the SSI solution for the spatial

signatures implies the a priori assumption of spatial smoothness of

the spectrum of current densities. Moreover, for this work, the SSI

solution for each atom was obtained by imposing anatomical

constraints using the Montreal Neurological Institute Probabilistic

Brain Atlas as described in Casanova et al. (2000). This set of
reviously identified spatial and spectral signatures for each component. The

ndition of a new data set of Subject 2. There are more theta bursts and less

state.
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assumptions has been amply used widely in the so-called distrib-

uted inverse solutions, which find the best applicability in the

reconstruction of activation of wide areas in the brain. Advantages

and shortcomings of these methods have been discussed exten-

sively in the literature (Fuchs et al., 1999; Pascual-Marqui 1995,

1999; Pascual-Marqui et al., 1994).
Results

Parallel Factor Analysis

To evaluate the performance of PARAFAC for extracting alpha

and theta activities in EEG, two different states were prepared in a

benchmark data set. For this purpose, 10 segments of 1 s each were

selected from the wavelet-transformed data (after wavelet transfor-

mation the time-varying EEG spectrum data set was subsampled to

100 Hz to reduce the computational cost of PARAFAC). Clear

alpha activity is observed continuously during resting and task

condition; however, strong theta activity appears only intermittent-
Fig. 8. To train the screening algorithm for the detection of eye movement artifacts, P

as well as eye blinks. Using the spatial and spectral signatures of these three compon

resting condition, which was not used for estimating factors. The data set recorded f

fewer in the task condition. On visual inspection of the raw data, it appears that

PARAFAC atomic decomposition showed that this is due to eye blink, as the many
ly during task condition. Therefore, five segments were selected

randomly from the resting condition and the other five segments

were selected from the portions that contain typical theta bursts

during the task. The segments were concatenated into the bench-

mark data set consecutively to form the three dimensional matrix

S(Nd
� Nf

� Nt
).

In the PARAFAC decomposition of S, two atoms appeared for all

subjects with spectral signature peaking in the alpha and theta range

(Fig. 2).

The analyzed frequency range was 0.5–20 Hz step by 0.5 Hz,

which is sufficient to extract theta and alpha activity. The use of the

Corcondia index suggested that in three subjects, these two atoms

were sufficient to explain the data set. In two subjects, an

additional atom was needed. The Corcondia was more than 90%

in all cases (optimally it should be 100%). The alpha and theta

peaks were around 11 and 7 Hz, respectively. Subject 1 is typical of

those who showed strong alpha and little theta activity during rest

conditions. Temporal signatures (Fig. 3) show that during the task

condition, this subject produced strong theta activities and reduced

alpha activity.
ARAFACwas applied to a data set containing typical theta and alpha activity,

ents as a template, we screened 1 min of continuous data sets obtained in the

rom Subject 1 contained many eye blink artifacts in the resting condition and

there are more theta bursts during rest than during the task condition. The

peaks in the temporal signature of theta and eye blink atom coincide.
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Figs. 4(a) and (b) show the spatial signatures of the alpha and

theta atoms as topographic maps for this subject.

The alpha and theta atoms appear in occipital and frontal area,

respectively. Figs. 4(c) and (d) are the corresponding SSI solutions

for these spatial signatures. The sources for the alpha and theta atoms

are in the calcarine sulcus and in the anterior middle frontal cortex,

respectively. These spatial distributions were relatively stable for all

subjects. Fig. 5 shows the estimated SSI solutions for the spatial

signatures of all subjects, corresponding to the theta atom. The

activated region had a predominantly frontal distribution in all

subjects.

Principal Component Analysis

To compare it with PARAFAC, we also carried out PCA of S.

For this purpose, the data were transformed into a matrix by

unfolding the three dimensional array. Results from our PARAFAC

decomposition of S were matched with corresponding results

obtained by applying PCA to the unfolded data set. Figs. 6(a) and

(c) show the reconstructed components in the frequency/time plane

that correspond to the two largest eigenvalues of PCA. The first

component showed strong alpha activities during the resting con-

dition. The second component shows strong theta activities and

reduced alpha activity during the task condition. These components

had a marked resemblance to the frequency/time reconstructed

plane of the alpha and theta atoms of PARAFAC (Figs. 6(b) and (d)).

The peaks of these activities, as well as the order of appearance of

the atoms, were the same in PARAFAC and PCA decompositions.

The topographies of the PCA components were also very similar to

the spatial signature of the PARAFAC atoms (Figs. 4(a) and (b)).

Screening

Using the screening procedure described above, it was possible

to use PARAFAC to search for the presence of atoms in a new data

set, whichwere not used for estimating the loadings. In this study, we

consider new data from the same subject and only theta and alpha

atoms were of interest. The spatial and spectral signatures for the

templates of theta and alpha atomswere estimated by using Subject 2

data as a benchmark. Reconstruction of the temporal signature for

new data was carried out by screening 1 min of continuous data in

the resting and task conditions. Fig. 7 shows the appearance of

pronounced theta bursts and the decrease of alpha bursts in the task

state. In the resting state, the theta burst disappeared and the alpha

bursts increased.

Artifact detection

If PARAFAC is applied to a data set that contains artifact, some

of the atoms will correspond to such activity (e.g., eye blink, eye

movement, EMG, etc. . .). Using these atoms as templates, artifact

detection can be carried out by the screening procedure. As an

example, PARAFAC was applied first to a training data set from

Subject 1 that contained theta and alpha oscillations as well as eye

movement artifact (this was assessed empirically by an experienced

electrophysiologist). The number of atoms was chosen such they

could be identified easily as theta, alpha, and eye movement artifact.

Using the spatial and spectral signatures of these three atoms as

templates, 1 min of continuous data in resting and task conditions

were screened. Fig. 8 shows the corresponding temporal signature of

the three atoms for Subject 1.
The data set recorded from this subject contained many eye

movement artifacts in the resting condition and far fewer in the

task condition. A superficial analysis would lead to the conclu-

sion that there are more theta bursts during the resting than the

task condition. However, these are probably due to the presence

of artifacts, because there are many coincident peaks in the

temporal signatures of the theta and artifact atoms.
Discussion

This paper introduces a new type of space/frequency/time

atomic decomposition of the EEG. It takes advantage of the fact

that three-way arrays of data may be decomposed into a sum of

atoms of which is a trilinear combination of factors or signatures.

This decomposition will be unique if the number of atoms is less

than half the sum of the ranks of the three matrices formed by

concatenating the signatures. The application of this concept to

obtain unique space/frequency/time decomposition for the EEG is

possible by arranging the multichannel evolutionary spectrum of

the EEG in a three-way data array with dimensions indexed by

channel, frequency, and time. The underlying theoretical require-

ment is that of a moderate amount of linear independence for

atom topographies, spectra, and time courses. This is a much

milder requirement than previous models underlying space/time

atomic decompositions (PCA or ICA). This is the first intrinsi-

cally unique space/frequency/time atomic decomposition proposed

in the literature.

A physiological interpretation of the model presented here is

intuitively appealing. It assumes neural sources with a fixed

geometrical relation to the sensors that produce oscillatory activity

with a fixed spectral whose amplitude is temporally modulated.

This model is not a completely general; for example, a frequency-

modulated chirp would require a large number of components,

such that the rank condition would be violated.

On the other hand, at most three space/frequency/time atoms are

necessary for an adequate description of the EEG data analyzed in

this paper. The use of the Corcondia index facilitates the selection of

the number of components, an issue that is still difficult for most

decomposition methods including PCA and ICA. Also, for the data

set analyzed in this paper, two of the spectral signatures had a clear

and common interpretation as theta and alpha oscillatory activity.

Other components were not so constant and were sometimes

difficult to interpret. It may be that more a priori information must

be built into the model to avoid identification ambiguity. In this

regard, PARAFAC shares with ICA the lack of inherent ordering of

the extracted components. In the case of ICA, clustering techniques

have been applied to identify common modes (Makeig et al., 2002).

In the future, this approach might be used also for the space/

frequency/time decomposition.

Our work also shows that the temporal signatures of the theta

and alpha atoms may be used as indicators of physiological states.

A comparison with a PCA-Varimax analysis shows that the results

of the latter may sometimes be similar to those of PARAFAC in

terms of description of space and frequency/time profiles. PAR-

AFAC, however, provides a more parsimonious description of the

data in a qualitatively simpler manner.

An important application of the space/frequency/time atomic

decomposition is the screening of new data sets for the presence of

particular atoms. In other words, PARAFAC offers the opportunity

to screen recordings for bursts of oscillatory activity with a given
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topographic and spectral content. The results shown here demon-

strate the feasibility of this technique, not only to detect physio-

logical activity but also for the ever-present problem of artifact

removal.

One limitation of the implementation of the method presented

here is the estimation by the least-squares techniques. Embed-

ding the model in a Bayesian framework would allow more

flexibility in incorporating a priori knowledge and a principled

testing of different hypotheses about signatures within and

between subjects.

Are these results ‘real’?

As noted above, it has been proven that if the data is approx-

imately trilinear, if the correct number of components is used, and

if the signal-to-noise ratio is appropriate, then the true underlying

phenomena will be found with PARAFAC (Harshman 1972;

Kruskal, 1976, 1997). Also, there have been examples in which

the PARAFAC model coincides with a physical model, e.g.,

fluorescence excitation–emission, chromatography with spectral

detection, and spatiotemporal analysis of multichannel-evoked

potentials (Field and Graupe, 1991).

The usual and stronger way to validate the truthfulness of

results given by the application of multiway models is by split-half

analysis (Harshman, 1984; Harshman and De Sarbo, 1984). Due to

the uniqueness of the PARAFAC model, the same loadings must be

obtained in the non-split modes from models of any suitable subset

of the data. This analysis was not accomplished in this work.

Although we do not have definitive proof that our results reflect

exactly the real physical phenomena underlying the data, there are

some aspects of the method we can lean upon for assessing the

robustness of the model.

First, the algorithm is implemented such that we can select

different initial values. We obtain the same results by applying the

method with initial values given by direct trilinear decomposition of

the data as we do by random guesses. Second, changing the

convergence criterion over four orders of magnitude did not affect

the results. Finally, the interpretability of the results, their agreement

with previous studies of this kind of electrophysiological experi-

ment, and their robustness with constraints to the loadings like non-

negativity and orthogonality; as well as the small variability among

subjects, all give additional evidence in this regard.

From this perspective, we think that PARAFAC space/frequen-

cy/time atomic decomposition of multichannel evolutionary spec-

trum of the EEG can reliably and uniquely extract meaningful and

significant physiological activities, although this does not ensure

that the results correspond to the physical sources that generated

the data. Furthermore, the application of this technique requires

careful preprocessing of the data, exploration of outliers and

degenerate solutions, use of constraints, selection of appropriate

model order, and validation of the results as this cannot be

accomplished easily without prior knowledge of, or a theoretical

basis for, of the expected results. PARAFAC should be simply

considered another promising addition to the Neuroimaging anal-

ysis toolkit.
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Möcks, J., 1988b. Topographic components model for event-related poten-

tials and some biophysical considerations. IEEE Trans. Biomed. Eng.

35, 482–484.

Nunez, P.L., 1993. Electric Fields of the Brian: The Neurophysics of EEG.

Oxford Univ. Press.

Pascual-Marqui, R.D., 1995. Reply to comments by Hamalainen, Ilmo-

niemi and Nunez. In source localization: continuing discussion of the

inverse problem. Skrandies W ISBET Newsletter, vol. 6, pp. 16–28.

ISSN 0947-5133.

Pascual-Marqui, R.D., 1999. Review of methods for solving the EEG

inverse problem. Int. J. Bioelectromagn. 1, 1.

Pascual-Marqui, R.D., Michel, C.M., Lehmann, D., 1994. Low resolution

electromagnetic tomography: a new method for localizing electrical

activity in the brain. Int. J. Psychophysiol. 18, 49–65.

Sasaki, K., Tsujimoto, T., Nishikawa, S., Nishitani, N., Ishihara, T.,

1996. Frontal mental theta wave recorded simultaneously with meg-

netroencephalography and electroencephalography. Neuroscience 26,

79–81.

Sidiropoulos, N.D., Bro, R., 2000. On the uniqueness of multilinear de-

composition of N-way arrays. J. Chemom. 14, 229–239.

Soong, A.C., Koles, Z.J., 1995. Principal-component localization of the

sources of the background EEG. IEEE Trans. Biomed. Eng. 42,

59–67.

Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J., 1997. Oscillatory

g-band (30–70 Hz) activity induced by a visual search task in humans.

J. Neurosci. 17, 722–734.

Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J., 2001. The brainweb:

phase synchronization and large-scale integration. Nat. Rev. Neurosci.

2, 229–239.



22 
 

 

 

Introduction: multimodal neuroimaging of brain connectivity 

 

  



doi: 10.1098/rstb.2005.1655
, 865-867360 2005 Phil. Trans. R. Soc. B

 
Pedro A Valdés-Sosa, Rolf Kötter and Karl J Friston
 
Introduction: multimodal neuroimaging of brain connectivity
 
 

References
http://rstb.royalsocietypublishing.org/content/360/1457/865.full.html#ref-list-1

 This article cites 33 articles

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rstb.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. BTo subscribe to 

This journal is © 2005 The Royal Society

 on August 29, 2011rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/content/360/1457/865.full.html#ref-list-1
http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;360/1457/865&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/360/1457/865.full.pdf
http://rstb.royalsocietypublishing.org/subscriptions
http://rstb.royalsocietypublishing.org/


Phil. Trans. R. Soc. B (2005) 360, 865–867

doi:10.1098/rstb.2005.1655

 on August 29, 2011rstb.royalsocietypublishing.orgDownloaded from 
Introduction: multimodal neuroimaging of brain
connectivity

Published online 29 May 2005
One con
of brain
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stated explicitly in the work of its founders (Freund

2002), is that the computational properties of the brain

are a direct consequence of its circuitry. This insight

has been cumulatively validated over the years, but has

received unprecedented attention in the past decades.

This is owing to several factors. In the first place,

technological advances have transformed the acqui-

sition of data about neural connections from a slow

paced, tentative groping, into a high throughput

process of massive multimodal data acquisition (Kotter

2001; Buzsaki 2004) that encompasses morphological,

neurochemical and functional variables. With the

advent of modern neuroimaging methods, much of

this data can now be observed in vivo (Aine 1995;

Savoy 2001). In the second place, these advances in

measurements have occurred on par with theoretical

breakthroughs that now allow the formal analysis of

large complex networks (Albert & Barabasi 2002;

Hilgetag et al. 2002; Newman 2003). In the third

place, successful efforts in large-scale science, (brought

to the limelight by the Human Genome Project) have

established new paradigms of electronic collaboration,

data sharing and processing that are being applied to

the data acquired (Van Essen 2002).

As a response to this situation, a series of multi-

disciplinary workshops have been organized around the

theme of brain connectivity, first in Dusseldorf (Lee et al.
2003) and later in Cambridge (Bullmore et al. 2004).
These workshops assessed the data accumulated, the

methods bywhich theywere gathered and analysed, and

generated general theoretical conclusions. They also

charted out areas in which further work was necessary.

As a consequence, a third workshop was carried out

during 26–30 April 2004 in Havana, organized by

the Cuban Neuroscience Centre (http://www.hirnfor

schung.net/download/bcw04.html). Emphasis on this

occasion was placed on the use of in vivo neuroimaging

with magnetic resonance imaging (MRI) and electro-

encephalogram (EEG), to determine both anatomical

and physiological connectivity. Advances in statistical

methodology to determine physiological connectivity

was a theme of intense debate, especially regarding the

analysis of multimodal EEG–fMRI experiments. The

theoretical bases of connectivity studies were addressed

with discussions of detailedmodelling of neural systems

at multiple spatial and temporal scales. Special atten-

tion was dedicated to the validation of hypothetical

neural connections.
tribution of 21 to a Theme Issue ‘Multimodal neuroimaging
connectivity’.

865
i the
subject matter of these discussions, we were encour-
aged to put together a theme issue of the Philosophical
Transactions of the Royal Society B dedicated to brain
connectivity. For this purpose, we invited a distin-
guished series of authors to expand their thoughts,
inspired by the Havana workshop and subsequent
exchanges, in order to give a coherent overview of
current work in this area.

The first four papers (Tuch et al. 2005; Perrin et al.
2005; Parker & Alexander 2005; Behrens & Johansen-
Berg 2005) provide a state-of-the-art revision of the use
of diffusion MRI techniques for the in vivo estimation
of anatomical connectivity. A new method—q-ball
imaging—for measuring the diffusion of water with
MRI is explained and validated both in animal
preparations and phantoms. Another candidate
method—PAS-MRI—is used to drive probabilistic
fibre tracking for the first time, and the use of
probabilistic tracking methods for the segmentation
of brain structures is outlined.

These papers on anatomical connectivity are
followed by those on physiological connectivity as
reflected by EEG or fMRI time-series. The work by
Worsley et al. (2005), Dodel et al. (2005) and
Salvador et al. (2005) and explain methods for the
determination of functional connectivity, the relatively
assumption-free estimation of the correlation between
different brain areas (Friston 1994). The performance
of random field theory, the theoretical underpinning
of neuroimaging statistics, for testing massive sets of
correlations is studied. Methods for studying the
conditional independence of brain structures are
developed both in the time and frequency domain.
Of note is the introduction of graphical models
(Wermuth & Lauritzen 1990; Cowell et al. 1999) as
a theoretically sound basis for the study of functional
connectivity.

With more structured time-series models,
Kamiński (2005), Eichler (2005), Valdés-Sosa et al.
(2005) and Penny et al. (2005) attempt to estimate
causal relations or effective connectivity in develop-
ments that combine modern causality theory
(Glymour et al. 1988; Pearl 2000; Spirtes et al.
2000) with classical time-series analysis. The import-
ance of including all sources of signals into a common
multichannel system when estimating causal relations
was stressed.

The following papers (Tass 2005; Beckmann et al.
2005; Koenig et al. 2005; Riera et al. 2005) develop
methods for physiological connectivity analysis by
means of EEG recordings, fMRI recordings or con-
current EEG/fMRI experiments. The latter pose
challenging modelling issues, but also promise
q 2005 The Royal Society
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increased spatial and temporal resolution by the fusion

of information between these modalities.
Placing this area of research on a sounder theoretical

basis, Robinson et al. (2005); Breakspear & Stam

(2005) and Harrison et al. (2005) develop multiscale,
stochastic models of neural dynamics.

As important as it is to develop statistical methods
for theoretical models of brain connectivity, it is

essential to devise strategies to validate them. This
aspect is addressed by the last two papers in the issue.

Horwitz et al. (2005) develop realistic computational
models that explore physical limits on inference about

connectivity. Paus (2005) explores the use of transcra-
nial magnetic stimulation (TMS) perturbation as a
means of confirming casual relations in brain systems.

Careful perusal of this series of papers brings to
mind areas in which further work must be done. The

comparison of in vivo diffusion MRI-based tractogra-
phy information with physiological connectivity

measures in the same subjects has not been carried
out systematically. The more ambitious use of diffusion

MRI tractography probability distributions as prior
information for the estimation of functional and
effective connectivity has yet to be achieved. While

progress in modelling neural systems at the dynamical
level is encouraging, the formulation and validation of

adequate observation equations leaves much to be
desired. In all, this field will remain an exciting area of

research in the future.
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Universitätsstrasse 1, 40225 Düsseldorf, Germany
3Leopold Müller Functional Imaging Laboratory,
Wellcome Department of Imaging Neuroscience,
Institute of Neurology, University College London,
12 Queen Square, London WC1N 3BG, UK
REFERENCES
Aine, C. J. 1995 A conceptual overview and critique of

functional neuroimaging techniques in humans. 1.

MRI/fMRI and Pet. Crit. Rev. Neurobiol. 9, 229–309.

Albert, R. & Barabasi, A. L. 2002 Statistical mechanics of

complex networks. Rev. Mod. Phys. 74, 47–97.

Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M.

2005 Investigations into resting-state connectivity using

independent component analysis. Phil. Trans. R. Soc. B

360, 1001–1013. (doi:10.1098/rstb.2005.1634.)

Behrens, T. E. J. & Johansen-Berg, H. 2005 Relating

connectional architecture to grey matter function using

diffusion imaging. Phil. Trans. R. Soc. B 360, 903–911.

(doi:10.1098/rstb.2005.1640.)
Phil. Trans. R. Soc. B (2005)
Breakspear, M. & Stam, C. J. 2005 Dynamics of a neural
systemwith amultiscale architecture. Phil. Trans. R. Soc. B
360, 1051–1074. (doi:10.1098/rstb.2005.1643.)

Bullmore, E., Harrison, L., Lee, L., Mechelli, A. & Friston,
K. 2004 Brain connectivity workshop, Cambridge UK,
May 2003. Neuroinformatics 2, 123–125.

Buzsaki, G. 2004 Large-scale recording of neuronal ensem-
bles. Nat. Neurosci. 7, 446–451.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L. & Spiegelhalter,
D. J. 1999 Probabilistic networks and expert systems. New
York: Springer.

Dodel, S., Golestani, N., Pallier, C., El Kouby, V.,
Le Bihan, D. & Poline, J.-B. 2005 Condition-dependent
functional connectivity: syntax networks in bilinguals.
Phil. Trans. R. Soc. B 360, 921–935. (doi:10.1098/rstb.
2005.1653.)

Eichler, M. 2005 A graphical approach for evaluating
effective connectivity in neural systems. Phil. Trans. R.
Soc. B 360, 953–967. (doi:10.1098/rstb.2005.1641.)

Freund, T. F. 2002 Changes in the views of neuronal
connectivity and communication after Cajal: examples
from the hippocampus. Changing Views of Cajals Neuron
136, 203–213.

Friston, K. J. 1994 Functional and effective connectivity in
neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78.

Glymour, C., Scheines, R., Spirtes, P. & Kelly, K. 1988
Tetrad-discovering causal-structure. Multivariate Behav.
Res. 23, 279–280.

Harrison, L. M., David, O. & Friston, K. J. 2005 Stochastic
models of neuronal dynamics. Phil. Trans. R. Soc. B 360,
1075–1091. (doi:10.1098/rstb.2005.1648.)

Hilgetag, C., Kotter, R., Stephan, K. E. & Sporns, O. 2002
Computational methods for the analysis of brain connec-
tivity. In Computational neuroanatomy (ed. G. Ascoli).
Totawa, NJ: Humana Press.

Horwitz, B., Warner, B., Fitzer, J., Tagamets, M.-A.,
Husain, F. T. & Long, T. W. 2005 Investigating the neural
basis for functional and effective connectivity. Application
to fMRI. Phil. Trans. R. Soc. B 360, 1093–1108. (doi:10.
1098/rstb.2005.1647.)
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Data may now be recorded concurrently from EEG and functional

MRI, using the Simultaneous Imaging for Tomographic Electrophys-

iology (SITE) method. As yet, there is no established means to integrate

the analysis of the combined data set. Recognizing that the

hemodynamically convolved time-varying EEG spectrum, S, is

intrinsically multidimensional in space, frequency, and time motivated

us to use multiway Partial Least-Squares (N-PLS) analysis to

decompose EEG (independent variable) and fMRI (dependent

variable) data uniquely as a sum of ‘‘atoms’’. Each EEG atom is the

outer product of spatial, spectral, and temporal signatures and each

fMRI atom the product of spatial and temporal signatures. The

decomposition was constrained to maximize the covariance between

corresponding temporal signatures of the EEG and fMRI. On all data

sets, three components whose spectral peaks were in the theta, alpha,

and gamma bands appeared; only the alpha atom had a significant

temporal correlation with the fMRI signal. The spatial distribution of

the alpha-band atom included parieto-occipital cortex, thalamus, and

insula, and corresponded closely to that reported by Goldman et al.

[NeuroReport 13(18) (2002) 2487] using a more conventional analysis.

The source reconstruction from EEG spatial signature showed only the

parieto-occipital sources. We interpret these results to indicate that

some electrical sources may be intrinsically invisible to scalp EEG, yet

may be revealed through conjoint analysis of EEG and fMRI data.

These results may also expose brain regions that participate in the

control of brain rhythms but may not themselves be generators. As of

yet, no single neuroimaging method offers the optimal combination of

spatial and temporal resolution; fusing fMRI and EEG meaningfully

extends the spatio-temporal resolution and sensitivity of each method.

D 2004 Elsevier Inc. All rights reserved.

Keywords: N-PLS; EEG/fMRI fusion; PARAFAC; Multiway analysis;

SSI; SITE
1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2004.03.038

* Corresponding author. Neurophysics Department, Cuban Neuro-

science Center, Avenue 25, Esq. 158, #15202, PO Box 6412, 6414

Cubanacán, Playa, Havana, Cuba. Fax: +53-7-208-6707.

E-mail address: eduardo@cneuro.edu.cu (E. Martı́nez-Montes).

Available online on ScienceDirect (www.sciencedirect.com.)
Introduction

The armamentarium of the neuroscientist now includes tools

with spatial resolution ranging from centimeters to microns and

temporal resolution from years to nanoseconds. Even so, no single

tool provides an optimal combination of spatial and temporal

resolution, and there generally exists a tradeoff in which improve-

ment in one dimension of resolution requires compromises in the

other (Churchland and Sejnowski, 1988). Extending our under-

standing of the functional architecture of the human brain necessar-

ily requires a rational combination of multiple methods. Particularly

attractive is the fusion of the superb temporal resolution of electro-

encephalography (EEG) or magnetoencepalography (MEG), with

the excellent contrast and spatial resolving power of functional MRI

(fMRI). Several methods of integration have been reported (Horwitz

and Poeppel, 2002), each with its own approaches to analysis.

Under the assumption that the response of the brain to a set of

stimuli or conditions is the same when acquired at different times,

several groups (Babiloni et al., 2001; Baillet et al., 2001; Singh et

al., 1998) have attempted the analysis of EEG and fMRI data,

gathered separately. While this approach is not without problems

(Gonzalez-Andino et al., 2001; Ioannides, 1999), there is increas-

ing evidence that adequate modeling of multimodal data will allow

the estimation of the underlying neural processes with simulta-

neously high spatial and temporal resolution (Trujillo et al., 2001).

More recently, methods have been described for the concurrent

collection of EEG and fMRI data (Goldman et al., 2000). These

methods make possible the study of dynamic relationship between

fluctuations in the blood oxygenation level dependent (BOLD)

signal and the properties of the electrical activity recorded on the

scalp. Here, the fMRI and EEG data each necessarily provide

evidence of the same underlying brain activity, although the extent

to which they are measuring the same signals, or even signals

from the same processes, is indeterminate.

In a method they have called Simultaneous Imaging for Tomo-

graphic Electrophysiology, or SITE, Goldman et al. (2002) created

tomograms of the brain regions whose fMRI signal changes were

associated with variations in alpha band power. In that work, 16

bipolar EEG channels were recorded under the eyes-closed resting

state that is well known to produce elevated alpha wave activity. To

match the EEG and the fMRI time courses, they then convolved the
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measured alpha power at each time point with an a priori hemo-

dynamic response model (Cohen, 1997) and calculated the corre-

lation between the fluctuations of alpha activity and the BOLD time

course at each voxel. Alpha activity was defined as the broad band

spectral power in the frequency range 8–12 Hz calculated over the

2.5-s period needed to acquire each MRI volume and averaged over

the occipital derivations (T6-O2, O2-P4, T5-O1, O1-P3). Positive

correlations were found in thalamic voxels as well as in the insula,

while negative correlations predominated in the parieto-occipital

cortex. Thus, these correlation maps showed extended thalamo-

cortical structures implicated in the generation of this EEG rhythm.

A deeper analysis of these results, however, leads to further

questions.

Traditionally, the EEG has been decomposed into a series of

fixed broad spectral bands (delta, theta, alpha, beta, gamma, . . .)
based more on history and discovery than on a theoretical

framework. This approach, although computationally convenient,

may obscure the fact that the sources of each of these character-

istic oscillations may or may not be unique (Szava et al., 1994). It

has been shown that the EEG can be analyzed as a partially

overlapping spectral components defined with high-frequency

resolution (Pascual-Marqui et al., 1988); each spectral component

being interpreted as reflecting the activity in a given oscillatory

network. We seek here to associate each of these components with

the BOLD-fMRI activity. In keeping with standard terminology in

time–frequency decompositions (Chen et al., 2001), these com-

ponents will be designated as ‘‘atoms’’.

While strong prior information suggests that the scalp locations

best associated with alpha power fluctuations may well be near the

occipital electrodes, other spectral components may have a more

subtle or distributed relationship to scalp topography. Under these

more general circumstances, it may be better to have a more data-

driven means to estimate the linear combination of EEG measure-

ments (or derivations) that correlate optimally with BOLD. Such

estimates are likely to result in greater statistical power for the

detection of EEG–fMRI relationships. Similarly, it might be

desirable to look at the correlation of the EEG with a calculated

optimum linear combination of all BOLD signals, rather than with

each voxel separately.

Essentially, our goal has been to seek methods that best explain

the spatio-temporal relationships between fMRI and the oscillatory

components of the EEG without first forming a priori hypotheses

as to which characteristics of the EEG are likely be of most

interest. These considerations led us to search for methods of

atomic decomposition of the EEG and methods for correlating the

output of this decomposition with the fMRI data. There are a lot

of well-known methods for data reduction of the EEG. Among

them, Principal Components Analysis (PCA), Independent Com-

ponents Analysis (ICA), and dictionary-based decompositions

have been the most explored. They have been applied only to

two-dimensional data. As the time-varying EEG spectrum is, in

fact, a three-dimensional array (electrode pairs, frequencies, and

time), it cannot be expressed conveniently as a matrix. The

decomposition of such a multidimensional data has been better

accomplished by a generalization of the Singular Value Decom-

position known as Parallel Factor Analysis (PARAFAC) (Harsh-

man, 1970), a tool that has been used previously in the analysis of

evoked potentials (Field and Graupe, 1991) and pharmacological

studies using high-dimensionality EEG data (Estienne et al.,

2001). The most interesting advantage of the PARAFAC model

is that it provides a unique decomposition without imposing
orthogonality or independence constraints to the components. It

is also valued for being a parsimonious and ‘‘easily interpretable’’

model (Bro, 1998).

Several calibration methods (Principal Components Regres-

sion, ridge regression) can be used for correlating the EEG

decomposition and the fMRI data. Although some general guide-

lines have been given for establishing a hierarchy among them

(Kiers, 1991), there is not definitive calibration method that one

can stick to, since its correct application depends strongly on the

behavior of the data considered. In a straightforward application

of any of these methods (e.g., Principal Components Regression),

one could use the EEG spectral power estimates (principal

components of time-varying EEG spectrum), for different time

segments, as the independent variable to be correlated with the

fMRI. This procedure in two steps (decomposing and correlating)

does not ensure that we are finding the optimal relationship

between the EEG and the fMRI because decomposition is based

on nonphysiological assumptions (e.g., it is unreasonable to

expect that the activities of individual neural generators to be

mutually orthogonal). Therefore, we should search for a method

that is capable of simultaneously extracting EEG spectral com-

ponents or atoms (and their scalp landscapes) having maximal

temporal covariance with certain BOLD profiles. One possible

candidate for such a multimodal analysis is Partial Least-Squares

(PLS) regression, introduced in fMRI analysis by McIntosh et al.

(1996). In PLS, the fMRI data are treated as a matrix (voxels by

time). PLS identifies those linear combinations of fMRI voxels

that have maximal temporal covariance with linear combinations

of a second matrix of independent variables, measured at the

same time points. The method hinges on calculating the Singular

Value Decomposition (SVD) of the covariance matrix between

the fMRI and independent variables. This method has been used

for spatio-temporal analysis of event-related potentials (Lobaugh

et al., 2001) and simultaneous EEG and MEG data (Düzel et al.,

2003).

Fortunately, the PLS technique has been extended by Bro

(1996) to deal with multidimensional data, obtaining a new model

known as Multiway Partial Least Squares or just N-PLS. This

model consists essentially of decomposing the independent and

dependent data into multilinear models such that the score vectors

from these models have pairwise maximal covariance. The multi-

linear decomposition is made in the same way as PARAFAC, thus

inheriting both advantages and limitations of that model.

In this paper, the N-PLS model will be introduced for decom-

posing the EEG into a sum of atoms each with a specific spatial,

temporal, and spectral factors or ‘‘signatures’’. Simultaneously, the

fMRI data will be decomposed into the same number of atoms, each

the product of spatial and temporal signatures, in such a way that the

latter will have maximal covariance with the EEG temporal signa-

ture. The source localization of the EEG spatial signature (topogra-

phy) of each atom will be examined, allowing separate analysis of

the tomographic distribution of the EEG sources (what we will call

sources of the ‘‘EEG rhythm’’) and those tomographic sources

obtained as the fMRI tomograms that we interpret as the ‘‘brain

rhythm’’ generating system. It should be noted that we have limited

our consideration to oscillatory components of the EEG. While

important, they do not exhaust the list of interesting phenomena that

might possibly relate to the fMRI. Transient waveforms, for exam-

ple, are not optimally described in the time–frequency framework.

In principle, the methods developed here may be extended to

consider this situation.
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Methods

Consider a matrix, F(Ns � Nt)
, of the fMRI data (Ns voxels, Nt

time points) that is recorded simultaneously with the EEG time

series from Nd electrodes. Further, define the EEG signal recorded

during each TR (the period needed to collect an MRI volume) as a

‘‘segment.’’ In the present case, the time-varying EEG spectrum,

S(x)(Nd � Nt)
(x being the frequency), for Nt segments, was

estimated via the Thomson multitaper method (Thomson, 1982).

Let s be a reference EEG time signal, formed by selecting a linear

combination, a, of the EEG electrode power in a given band of

frequencies X, which was then filtered by the hemodynamic

response, H:

sð1�NtÞ ¼ aTð1�NdÞ
X
xaX

SðxÞðNd�NtÞHðNt�NtÞ ð1Þ

where the symbol, aT, represents the transpose of vector a. Then,

the correlations between the fMRI matrix and the reference EEG

signal: r(Ns � 1)= corr(F, s) are mapped.

In the analysis performed by Goldman et al. (2002), they

chose an ad hoc linear combination, a (an occipital electrode

set), and frequency band (8–12 Hz) for finding the reference

EEG time signal. We will extend this analysis to estimate the

optimal linear combination of electrodes, and a particular spectral

window defining an optimal frequency band
PPPP

xaX bðxÞSðxÞ .
Finally, we will estimate a suitable linear combination, u(1 � Ns

)T of

the elements of the fMRI matrix to be correlated with a particular

EEG time signal.

Parallel Factor Analysis

Recognizing that the time-varying EEG spectrum may be

expressed conveniently as a three-dimensional array makes possi-

ble the use of Parallel Factor Analysis (PARAFAC) (Carroll and

Chang, 1970; Harshman, 1970), a generalization of Principal

Component Analysis (PCA) for dealing with multidimensional

data. With PARAFAC, the time-varying EEG spectrum is decom-

posed (in a least-squares sense) into trilinear components, or atoms,

each being the product of a spatial, spectral and temporal factors, or

signatures.

Unlike PCA, PARAFAC has no rotational freedom; therefore,

the decomposition is unique, even without any orthogonality

constraints. It has been shown that if the data are approximately

trilinear, the correct number of components is used, and the signal-

to-noise ratio is adequate, then the PARAFAC algorithm will show

the true underlying phenomena (Kruskal, 1976, 1977). Moreover,

PARAFAC provides a unique data-determined linear combination,

i.e., a reference time signal, to correlate with the fMRI data. The

use of PARAFAC in analyzing three-dimensional EEG data,

(space, frequency, time) is described in a companion paper (Miwa-

keichi et al., 2004).

Then, applied to the time-varying EEG spectrum, which is

expressed as a three-dimensional matrix S(Nd � Nw � Nt)
, PARAFAC

decomposition establishes an element-wise trilinear model for

these data:

Ŝdwt ¼
XNk

k¼1

adkbwkctk þ edwt ð2Þ

where d, w, and t designate electrode pairs, frequency, and time,

respectively, and the term edwt represents the error. The total
number of components is Nk, each of which is designated by

index k. Our problem is to find the so-called ‘‘loading matri-

ces’’, A, B, and C whose Nk columns are the loading vectors

ak(Nd � 1), bk(Nw � 1), and ck(Nt � 1) of elements adk, bwk, and ctk
respectively.

We can fit the model expressed in Eq. (2) by finding

min
adkbwk ctk

jjSdwt �
XNk

k¼1

adkbwkctk jj2:

The interpretation of the loading vectors is as follows: ak is the

spatial signature of the kth atom, which is a representative topo-

graphic map, or linear combination of electrodes; bk is the spectral

signature for the kth atom and ck is the temporal signature, or time

course, for atom k. The only indeterminacies in the least-square

solution are the order of components and the scaling of loading

vectors. Thus, centering and scaling of the data are needed before

decomposition, as is a convention for the signs and scale of the

loadings. For PARAFAC, the resulting spectral and spatial loadings

are normalized, while the non-normalized loading will be the

temporal factor, reflecting the scale of the data.

It is important to select the most appropriate number, Nk, of

components. The Core Consistency Diagnostic (Corcondia) is an

approach for so doing that applies especially to PARAFAC models,

and has been shown to be a powerful and simple tool for deter-

mining the appropriate number of components in multiway models

(Bro, 1998). In this work, we use not only Corcondia but also the

evaluation of the systematic variation left in the model’s residuals.

PARAFAC has been extensively used in chemometrics, psycho-

metrics, and econometrics. In the field of spatio-temporal analysis of

Event-Related Potentials, PARAFAC has been shown to be formally

equivalent to the Topographic Components Model (TCM) (Möcks,

1988a,b). Field and Graupe (1991) offered some general guidelines

for the correct exploration of EEG data with PARAFAC. The basic

pitfall of the application of PARAFAC is that the data are actually

not trilinear, and, hence, a careful preprocessing and analysis of the

results most be done for assessing the validity of the model.

Multiway Partial Least-Squares Regression

Despite being a useful tool for data explorations and to find a

unique reference EEG time signal, the PARAFAC analysis leaves

two important questions unanswered:

a) Which frequency components are related to the fMRI signal?

b) What is the optimal linear combination of EEG electrodes to

correlate with the fMRI?

Partial Least-Squares regression is an automatic procedure to

find the linear combination that maximizes the temporal correlation

between the EEG and fMRI data (de Jong and Phatak, 1997;

Martens and Naes, 1989). This method is similar to Principal

Components Regression (PCR), where the independent variable is

decomposed into a set of scores, and the dependent variable is

regressed on these scores instead of the original variable. The main

difference being that in PLS regression, both independent and

dependent variables are decomposed such that these scores have

maximal covariance; that is, the relevant variations of the inde-

pendent variable for predicting the dependent variable are empha-

sized. An extension of the PLS regression model to three-way data

was proposed by Ståhle (1989). Later, Bro (1996) developed a

general multiway PLS (N-PLS) regression model that was shown
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to be optimal according to the theory of PLS and had a particular

case numerically equivalent to that of Ståhle. N-PLS seeks in

accordance with the philosophy of PLS to describe the covariance

of the dependent and independent variables. This is achieved by

fitting multilinear models simultaneously for independent and

dependent variables and for a regression model relating the two

decomposition models. On the other hand, as covariance is the

product of the correlation and the variances, these three measures

actually are maximized collectively.

According to Bro (1996), the model is known as N-PLS or

Multilinear PLS in general, and the specific model to be used in

this work is called tri-PLS2. This follows from its having a three-

way decomposition for the independent variable (tri), which will

be the time-varying EEG spectrum, and a two-way or bilinear

decomposition for the dependent variable (2), corresponding to the

fMRI data. This can be considered as a form of PARAFAC

decomposition constrained by additional conditions of maximal

covariance with certain BOLD components. The structural model

can be expressed as:

Ŝdwt ¼
XNk

k¼1

adkbwkctk þ edwt

F̂st ¼
XNk

k¼1

uskvtk þ est

where est and edwt are elements of noise matrices and the index, s,

represents the voxels or grid points inside the brain. These

decomposition models are estimated iteratively, component-wise,

by finding a set of normalized vectors, ak, bk, and uk such that the

least-squares score vectors, ck and vk, have maximal covariance. It

is worth underscoring that the N-PLS model is unique, as it

consists of successively estimated one-atom models, each of which

is itself always unique. On the other hand, note that the EEG data
Fig. 1. Tri-PLS2 diagram. The time-varying EEG spectrum is represented as a three

fMRI matrix is indexed by time and voxels (s). Both data are decomposed into a su

and temporal (ck) signatures. fMRI atoms have a spatial (uk) and temporal (vk) sign

the temporal signatures to have maximal covariance. Joining all atoms for eac

corresponding matrices A, B, C, V, U.
must first be preprocessed, both by removing muscle and motion

artifacts, replacing them by linear interpolation of the data, and by

convolution of the EEG spectrum with the hemodynamic impulse

response function (Cohen, 1997). A graphical representation of the

tri-PLS2 method is shown in Fig. 1.

The interpretation of loading vectors is straightforward. The

spectral signature of the EEG for the k atom, bk, will allow the

identification of those brain rhythms whose time-varying enve-

lopes has maximal covariances with the BOLD signal. The spatial

signature of the fMRI for atom k, uk, is a tomographic map (which

is not a correlation map) showing those BOLD signals whose time

courses are correlated maximally with the EEG. Finally, the spatial

signature of the EEG, ak, is a representative topography of atom k,

extracted by asking for the maximal temporal correlation between

EEG and fMRI.

The decomposition is made component-wise; that is, for each

component (atom), a rank-one model is built of both the

independent variable 3D matrix S, and the dependent variable

2D fMRI matrix, F. These models are then subtracted from the

original data, and a new atom of signatures is found from the

residuals. The calculation for one atom of the tri-PLS2 model is

developed in detail in Appendix A. As in PARAFAC, a conven-

tion about signs and scale is needed. In this case, the non-

normalized factors will be the temporal signatures of both the

EEG and the fMRI data, while the other signatures are normal-

ized. Signs were assigned to ensure that the correlation between

fMRI and EEG temporal signatures for the alpha atom were

positive. Moreover, in this work, it is important to obtain smooth

images as atoms of the spatial signature of the fMRI. For the sake

of simplicity, the raw data can be presmoothed and the same

smoothed signatures will be obtained from the decomposition

(Bro, personal communication). Therefore, the raw fMRI data are

presmoothed to obtain smoothed atoms for the spatial signature

of fMRI. Smoothing consisted of applying the nearest neighbor

moving average three times to the raw fMRI data.
-dimensional array indexed by time (t), frequency (w), and channel (d). The

m of atoms or components. Each EEG atom have spatial (ak), spectral (bk),

ature. The extraction of atoms is performed simultaneously by constraining

h signature allows them to be expressed in matricial notation, obtaining
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Assessment of N-PLS model

The advantages of N-PLS over bilinear methods are that it is

much more parsimonious, easier to interpret, and less prone to

noise. This advantages hold even over nonlinear calibration

models (e.g., feedforward neural networks) because they are

bilinear in the decomposition of the independent variable and

the nonlinearity is introduced only in the relation of this decom-

position with the dependent variable. Another advantage is that the

algorithm is faster than other multilinear decomposition methods

(e.g., PARAFAC) due to the relatively few parameters to estimate

and particularly, because the tri-PLS algorithm boils down to

eigenvalue problems.

However, this model has its own pitfalls. The basic problem is

the appropriateness of the trilinear model. As this is a data-

dependent question, there is not a general and straightforward

answer. If there is no any a priori knowledge about the three-way

nature of a given data, one could try different methods to see

which one describes the data best. In the case of several methods

fitting the data equally well, one should choose the simplest model

and in this regard multilinear models are preferred over bilinear

ones. On the other hand, although it has been shown that models

like N-PLS seldom fail to converge and offer degenerate solutions

(Bro, 1998), these are problems that can arise in multiway

methods and should be taken into account in the exploration of

the data.

In practice, it is convenient to apply a PARAFAC decomposi-

tion to the EEG data before applying tri-PLS2 model. This initial

exploration will allow to assessing the appropriateness of the

trilinear model for the time-varying EEG spectrum, to identify

possible outliers in the data, and the estimation of the number of

significant atoms present in the data. The implementation of

PARAFAC used in this work is contained in a Matlab Toolbox

developed by Bro and available on the web. It provides several

diagnostic tools, such as Corcondia, residuals plots, leverages

plots, convergence, and explained variance of the data, among

others.

As said above, the appropriate number of components was

obtained with the residual analysis and the Corcondia index. This

index was also used for assessing the trilinear structure of the data

as shown in Estienne et al. (2001). The analysis of leverages

allowed to detecting four outliers in the time mode. These four

time windows (or segments) were discarded from the data for

subsequent analysis. We also removed some constant signature

(nonphysiologically meaningful) in the frequency mode by an

adequate centering across this mode. Furthermore, comparison

between the loadings of the time-varying EEG spectrum decom-

position provided by PARAFAC and those provided by tri-PLS

will validate (at a preliminary level) the truthfulness of the results

obtained. A detailed explanation about the use of the diagnostic

tools for this exploratory analysis and discussion of the reliability

of PARAFAC model can be found in Bro (1998) and Miwakeichi

et al. (2004).

Source localization analysis

The spatial signature for the time-varying EEG spectrum, ak,

may be analyzed further by source reconstruction methods, such as

Low-Resolution Electromagnetic Tomography (LORETA) (Pasc-

ual-Marqui et al., 1994) to find those underlying electrical sources

that are correlated temporally with the BOLD signal. However,

E. Martı́nez-Montes et al. / N
LORETA cannot be applied directly since ak is not derived from

voltages but rather from the power spectra of voltages. Therefore,

in this case, we developed a procedure that allows the estimation of

the spectra of the EEG sources on the basis of the spectra of the

observed voltages. We shall call this type of source localization

‘‘Source Spectra Imaging’’ (SSI). This is based on the following

assumptions:

� There is no spatial correlation between scalp voltage measure-

ments.
� There is no spatial correlation between electric current densities

inside the brain.
� The source spectra (variances of current densities in frequency

domain) to be estimated will be the smoothest one in space.
� The source spectra is the same in the x, y, and z directions.

The detailed formulation for obtaining this inverse solution

can be found in a companion paper (Miwakeichi et al., 2004).

It must be emphasized that the assumptions behind this

inverse solution can classify it as a distributed inverse solu-

tion, whose pitfalls and drawbacks have been extensively

described in the literature (Fuchs et al., 1999; Pascual-Marqui,

1999).

Moreover, the EEG data analyzed in this work corresponds to

voltages measured in an array of 16 bipolar pairs; therefore, to find

the SSI solution, the problem of transforming these bipolar

measurements into unipolar voltages must be addressed. We must

thus construct the matrix M that transforms the spatial signatures

of the EEG, ak
uni, obtained (ideally) from a unipolar array, into

those measured from bipolar recordings (Eq. (3)). A partial

representation of matrix M is given in Eq. (4). Then, ak
uni is

estimated by multiplying Eq. (3) by the Moore-Penrose pseudo-

inverse of matrix M.

ak ¼ Maunik ð3Þ

M ¼

Fp2 . . .F7 F8 . . .O2 . . .T4 . . . T6

1 . . . 0 �1 . . . 0 . . . 0 . . . 0 Fp2� F8

0 . . . 0 1 . . . 0 . . . �1 . . . 0 F8� T4

] ] ] ] ] ] ]

0 . . . 0 0 . . . �1 . . . 0 . . . 1 T6� O2

. . . . . . . . . . . . . . . . . . ]

ð4Þ

Further, with this method, we can visualize the spatial signa-

tures of the EEG obtained by tri-PLS2 decomposition (which

would correspond to the bipolar topographies) as a topographic

map on the head. Finally, it is noteworthy that these topographic

maps, and their SSI solutions, are essentially dimensionless, as the

former is normalized as part of the scale convention for the tri-

PLS2 model.

Statistical inference

Our first inferential problem is to determine whether there is a

significant correlation between the time courses of the EEG and

fMRI. This can be tested readily by permutation of the time



Fig. 2. Spectral signatures of the EEG decomposition. (A) Spectral

signatures obtained from PARAFAC decomposition of the time-varying

EEG spectrum. Three atoms were extracted. The first has a spectral peak

around 10 Hz, corresponding to the well-known alpha rhythm. The second

has a spectral peak around 4 Hz, which is a value usually assigned to theta

activity. The third atom corresponds to a fast activity with spectral peaks

from 35 to 45 Hz, in the gamma range. (B) Spectral signatures of the time-

varying EEG spectrum, obtained from the tri-PLS2 model. Three atoms or

components were extracted. These spectra resemble strongly those obtained

from PARAFAC decomposition.
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segments in the time-varying EEG spectrum, which will destroy

any temporal correlation between the EEG and fMRI data (Galán et

al., 1997). This procedure is not appropriate, however, if there is

any autocorrelation in the time series of the EEG data. Using the

ARFIT toolbox for Matlab (Schneider and Neumaier, 2001), we

fitted an autoregressive model of order 2 (selected automatically by

Schwarz’s criterion) to the time course of time-varying EEG

spectrum. With this information, we applied a block bootstrap

method, which is adequate in the case of weak dependence of

observations (time points in this case). The method consists of

resampling with replacement, using blocks of consecutive time

points instead of individual time points. The length of the blocks

was chosen to be great enough to preserve the original dependence,

so that the empirical distribution of statistics for blocks will

resemble that for the original time points (Davison and Hinkley,

1997). On the other hand, it is also desirable to have as many

blocks as possible. In our case, we use nonoverlapping blocks of

length l = 2p+1; p = 2 being the order of the autoregressive model.

Thus, by applying the tri-PLS2 method for N resampled series, we

obtained N different decompositions into atoms of corresponding

signatures for each modality. The correlation coefficients between

the EEG and corresponding fMRI time courses for each atom were

then computed. From the 95th percentile of the empirical distri-

bution of these correlations, we established a significance level for

testing of the original correlation.

Our second inferential problem is to determine which voxels in

the spatial signature of the fMRI are significantly different from

zero. This is important for identifying brain regions that contribute

to a particular EEG-fMRI temporal correlation. Thus, for this

problem, we used a simple jackknife resampling procedure (Davi-

son and Hinkley, 1997) from which a pseudo t image was

constructed. In this specific case, the jackknifed estimate was

obtained as follows: the leave-one-out spatial signatures (ui ; i =

1 . . . Nt) of the fMRI were created by leaving out time points one at

a time and applying the tri-PLS2 model to the truncated data. The

jackknife pseudo observations were then computed as:

ui
*Ntu � ðNt � 1Þui; i ¼ 1 . . .Nt

where u is the fMRI spatial signature corresponding to the

complete data. This equation holds for all components although

we have eliminated the subscript k for simplicity. Using the

mean of the pseudo observations ðū* ¼ 1
Nt

PPPPPNt

i¼1 ui
*Þ and the

standard deviations ru	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

PPPPPNt

i¼1ðu
q

i

*� ū*Þ2
� �

, the pseudo t image

for each atom can be computed as timage ¼
ffiffiffiffiffi
Nt

p
ū*
ru	

:

Experimental data

The EEG was sampled at 200 Hz from an array of 16 bipolar

pairs, (Fp2-F8, F8-T4, T4-T6, T6-O2, O2-P4, P4-C4, C4-F4, F4-

Fp2; Fp1-F7, F7-T3, T3-T5, T5-O1, O1-P3, P3-C3, C3-F7, F7-

Fp1), with an additional channel for the EKG and scan trigger. The

fMRI time series was measured in six slice planes (4 mm, skip 1

mm) parallel to the AC–PC line, with the second from the bottom

slice through AC–PC. More details about this data set can be

found in Goldman et al. (2002). In the work presented here, we

have analyzed five simultaneous EEG/fMRI recordings from three

different subjects. Informed consent was obtained from all volun-

teers based on a protocol approved previously by the UCLA Office

for the Protection of Research Subjects.
Results

Both PARAFAC and N-PLS techniques were applied to the

recorded data sets, and yielded similar results for all subjects.

There was no statistical inference about differences among sub-

jects, so, for the purpose of this paper, we present representative

data from a single subject. As a first exploration of the data, a

PARAFAC model was fitted to the time-varying EEG spectrum.

The appropriate number of components for this model was chosen

using Corcondia (see above). The model was fitted using direct

trilinear decomposition for its initial values.

Three significant atoms or components, characterized by their

spectral signature, were extracted by PARAFAC (Fig. 2A). It is



Fig. 3. Scatter plot of fMRI temporal signature against EEG temporal signature. (a) Alpha atom. A nearly linear positive dependence can be seen. The Pearson

correlation value is 0.83, corresponding to P = 0.005. (b) Theta atom. The linear dependence between the EEG time course and fMRI time course has a positive

correlation value of 0.56. However, it is not significant, p = 0.07. (c) Gamma atom. There is no clear linear dependence.
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easy to recognize the alpha atom with its peak near 10 Hz. A

slower theta activity peak is also present with a maximum

around 4 Hz, as is a gamma peak in the range from 35 to 45

Hz. The Corcondia for this fit was around 93%, and the

explained variation of the data was 53.5%. Moreover, PAR-

AFAC allowed identification of outliers in the temporal signa-

ture, which were eliminated from the data for subsequent

PARAFAC and posterior analyses.

Using this information, the N-PLS model was applied for only

three atoms. In Fig. 2B, the spectral signatures for all atoms are

shown, and they resemble strongly the spectra found by PAR-
Fig. 4. fMRI spatial signatures for the three atoms. All images were plotted fol

different minimum and maximum values. Alpha and Gamma atoms have a maxim

value of 0.037 and a minimum of �0.066. The threshold was chosen convenient
AFAC decomposition. Fig. 3 shows scatter plots of the temporal

signatures of the fMRI vs. the EEG separately for each atom. The

alpha and theta activities seem to have clearly positive correlations,

but gamma activity does not. The Pearson correlation values are

shown for each activity band. Supporting the visual impression,

correlations were highest for the alpha atom. By using the 1000

samples of the block bootstrap test described previously, only the

alpha atom presents a correlation value with probability lower than

0.05. The theta atom has a non-negligible correlation value, whose

empirical probability is slightly higher than the predetermined

theoretical significance level of 0.05.
lowing a color scale from �0.05 to 0.05. However, the components have

um of 0.055 and a minimum value of �0.066. Theta atom has a maximum

ly to 0.016 for better visualization of the areas with higher values.



Fig. 5. Jackknifed pseudo t image for the fMRI spatial signature of the alpha rhythm atom. The jackknife procedure consisted of leaving out temporal points

one at a time and applying the tri-PLS2 model to the truncated data. Then, a t value was calculated for each voxel and the resulting image was thresholded to a

significance value of F3.5. Blue regions (anterior median occipital, lateral occipital, occipital pole, and left and right temporal superior) represent those areas

with significantly negative temporal correlation with EEG. Thalamus and insula are red representing a significant positive correlation between EEG and fMRI

time courses.
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Fig. 4 shows the spatial signature of the fMRI decomposition:

the uk vectors. These are shown as tomograms in which those

regions that have negative temporal correlation between EEG and

fMRI are blue and those that have positive temporal correlation

appear in red. For the alpha atom, the fMRI spatial signature shows

positive activation of thalamus and insula, while occipital and

superior temporal regions are activated negatively. The theta atom

showed predominantly negative activation of anterior cingulate and
Fig. 6. Spatial signatures of the EEG and its SSI solutions. The topographical repre

was calculated by pseudo-inverting the matrix that transforms topographies from

atom shows higher values at posterior regions, the theta topography has higher val

in the left parieto-temporal area. The corresponding SSI solutions are to the right. M

with higher activation in the left hemisphere. Theta sources are in the anterior cing

parieto-temporal area. Units for inverse solutions are ignored because energy value

PLS algorithm.
occipital regions, while the gamma atom resembles the alpha

component. For testing the robustness of this type of image, a

pseudo t image of the alpha atom was calculated, it being the only

atom having a significant temporal correlation with the EEG. This

image is shown in Fig. 5, and was achieved by the jackknife

procedure described above. In this figure, blue regions, (anterior

median occipital, lateral occipital, occipital pole, and left and right

temporal superior) represent those areas with significant negative
sentation of spatial signatures of the EEG is shown at the far left. This map

unipolar recordings into those obtained with bipolar derivations. The alpha

ues located in frontal regions, and the gamma atom shows maximum values

aximum activation for the alpha component is located in the occipital area,

ulate region, and the activated region for the gamma atom is located in the

s for the topographies are plotted and have been normalized as part of the N-
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temporal correlation with the EEG. The areas corresponding to

thalamus and insula are red, representing a significant positive

correlation between EEG and fMRI time courses.

From the spatial signature, ak, of the time-varying EEG

spectrum, we estimated those regions inside the brain that contrib-

ute to the EEG and that are correlated temporally with fMRI. Fig. 6

shows the topographies or EEG spatial signatures, and their

corresponding SSI solutions (current density spectra) for each

atom. The topography of the alpha atom shows higher values at

posterior regions; the theta topography has higher values in frontal

regions, and the gamma atom shows maximum topographic values

in the left parieto-temporal area. The Source Spectra Imaging

solution for the alpha component showed its maximum activation

in the occipital area, with higher activation in the left hemisphere.

Sources for theta atom are in the anterior cingulate region, and the

activated region for the gamma atom is in the parieto-temporal

area.
Discussion

This paper introduces a new method, trilinear Partial Least

Squares (tri-PLS2), for the analysis of concurrent EEG/fMRI

recordings. This is the first use of Partial Least-Squares techniques

to carry out multimodal neuroimaging fusion. Our objective is to

identify the coherent systems of neural oscillators that contribute to

the spontaneous EEG. Doing so requires the solution of three

related problems: (i) decomposing the EEG, in the space–frequen-

cy–time domain, into a set of components or atoms, (ii) establish-

ing the relation of these EEG components to concurrent BOLD

fluctuations, and (iii) analyzing the sources of the EEG atoms. We

shall consider each of these problems in turn. At the outset it

should be stressed that the two phenomena—EEG and BOLD—

evolve over very different time scales. In fact, we shall be

analyzing the evolutionary spectrum (Priestley, 1965) of the

EEG, a concept based on a locally stationary modeling of the

electroencephalogram (Dahlhaus, 1997). It is only the envelope of

the waves usually analyzed by electroencephalography that will be

matched to BOLD.

Atomic decomposition of the EEG

The analysis of the evolutionary spectrum of the EEG produces

a three-dimensional data array (space–frequency–time). The first

choices that come to mind for the decomposition of this array are

either Principal Components Analysis (PCA) or Independent

Components Analysis (ICA), a set of techniques that have received

much recent attention. We decided to avoid these methods,

however, for two reasons: First, they achieve a unique decompo-

sition into atoms only by imposing arbitrary mathematical con-

straints (orthogonality and independence, respectively), and

second, these methods are targeted toward two-dimensional arrays

(matrices). In our situation, this means ‘‘unfolding’’ the data,

stacking the time and frequency components along one dimension,

and thereby destroying their distinction; keeping these different

dimensions separate seems a much better alternative. A first

attempt at a space–frequency–time atomic decomposition was

reported in a paper by Koenig et al. (2001). In their method, the

decomposition is carried out in several stages; first by the identi-

fication of time–frequency atoms, and then by the estimation of

distinct topographies that are stable over time. This separation into
two stages of analysis is not conceptually necessary, and in fact is

not optimal.

Our trilinear method based on Parallel Factor Analysis,

introduced in the present paper, allows space–frequency–time

estimation in a single step, by minimization of an explicit

objective function. The resulting decomposition is intrinsically

unique and specifies atoms that are defined as spectral compo-

nents that vary over time and have a specific topography. A

more detailed description of the combined use of PARAFAC,

and distributed inverse solutions for in vivo imaging of neural

oscillatory systems, is the subject of a companion paper (Miwa-

keichi et al., 2004). A consistent finding in all data sets

analyzed was the appearance of three components whose peaks

were within the traditional theta, alpha, and gamma bands. Thus,

when looking at the relations of the EEG with BOLD, it is

potentially important not to constrain the analysis to a single

frequency band, as was done by Goldman et al. (2002),

although the present data do not show strong fMRI correlation

with the EEG signal in the other bands.

It is remarkable that the restriction of maximal correlation with

the BOLD signal produces spectra that are practically the same as

those obtained by the PARAFAC decomposition. Based on the

diagnostic tools, the physiological interpretability, and the replica-

bility among several data sets, we can say that these are meaningful

results, although we cannot ensure that they correspond with the

real underlying physical phenomena. Therefore, it can be conclud-

ed that we have obtained robust and physiologically meaningful

results with the use of tri-PLS algorithm.

Relating EEG atoms to the BOLD signal

As shown here, it is possible to constrain the trilinear EEG

atomic decomposition further by requiring maximal temporal

correlation with the BOLD signal, a procedure that extends the

classical Partial Least-Squares technique. It is important to say that

the correlation found between both temporal signatures was

assessed by a block bootstrap method, which is a strong diagnostic

tool for obtaining reliable results. Furthermore, the spatial signature

of the fMRI was also statistically validated with the use of a

jackknife procedure. These kind of diagnostic tools provide addi-

tional evidence on the robustness of the model assumed, i.e., about

how well the properties of the data fit the assumptions of the

model.

The alpha component has a temporal relation to the BOLD

signal that is significant. The regional distribution of the fMRI

spatial factor corresponds closely to that described by Goldman et

al. (2002), for alpha activity, thus confirming their conclusions.

Since the correlation between the EEG and BOLD temporal factors

are positive, it becomes clear that the image shown in Fig. 5 is

equivalent to the correlation map presented by that group. In

particular, there is a positive relation between thalamic and insular

BOLD activity and the EEG time course for alpha component. On

the other hand, the BOLD signals within parieto-occipital and

somatosensory cortices are related inversely to EEG. This latter

negative correlation is probably due to a decrease in the amplitude

of the EEG in activated cortex in this band, resulting from the

temporal resynchronization of the postsynaptic potentials of the

involved neural circuits.

The extracted theta component showed moderate temporal

correlations that did not reach the pre-established 0.05 level of

statistical significance. An examination of the spatial distribution
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of the fMRI spatial signature for this atom shows a frontal

activation. It is tempting to speculate that this component corre-

sponds to a frontal midline theta rhythm that has not been

adequately resolved due to the limited spatial coverage of the

brain by the fMRI protocol used. The gamma component was not

correlated with the recorded BOLD signal. Once again, we cannot

exclude the possibility that better spatial coverage of the brain

might reveal such correlations. Further, we can speculate that

gamma fluctuations might relate to dynamic and transient assem-

blies of systems of brain activation (Tallon-Baudry and Bertrand,

1999) that are not stable throughout the recording period.

Analyzing the sources of the EEG atoms

A strength of both PARAFAC and tri-PLS2 is that they identify

definite topographic patterns that can be subjected to source

localization. These inverse solutions interpreted together with the

fMRI spatial factors provide new information on the sources of

EEG rhythms.

The Source Spectra Imaging solution for the alpha compo-

nent reveals activation predominantly in the parieto-occipital

region. This corresponds with results on the origins of alpha

rhythm that have been reported previously, both using a fre-

quency domain dipole solution (Valdés-Sosa et al., 1998) as well

as frequency domain distributed solutions (Casanova et al.,

2000). An interesting fact is that the thalamus shows very little

activation, in contrast to the high positive correlation found by

Goldman et al. (2002), and confirmed by the tri-PLS2 fMRI

spatial signature.

This dissociation between the sources of the spatial signature of

the EEG atoms and the spatial signature of the fMRI of the alpha

atom is likely due to the negligible contribution of the primary

current sources of thalamic neurons to the scalp EEG. In this case,

the observed correlations between thalamic BOLD and EEG must

be indirect. For example, the thalamus is probably correlated

negatively with the parieto-occipital cortex, which seems to be

the location of the generators of the ‘‘EEG alpha rhythm’’. Because

the BOLD signal in this region is also correlated negatively with

the alpha EEG spectrum, this would explain a positive correlation

between alpha power and thalamic metabolic activity as an indirect

effect through parieto-occipital cortex. In the terminology of

Friston et al. (1996), there is a functional connectivity between

the EEG and thalamus, but the effective connectivity path would

not be direct, being mediated instead by the parieto-occipital

cortex. Thus, according to the definitions given here, insula,

thalamus, and parieto-occipital cortex are generators of the ‘‘alpha

brain rhythm’’ while only parieto-occipital cortex contribute to the

‘‘EEG alpha rhythm’’. We note that the analyses presented in this

paper do not allow the distinction of whether a structure belonging

to a rhythm generating system oscillates in that frequency range. It

seems unlikely that joint EEG/fMRI recordings can resolve the

extent of phasic, versus tonic, participation in a brain rhythm of a

structure that does not produce a measurable EEG. In other words,

there is still invisible information for an EEG/fMRI fusion analysis,

namely, the fine temporal characteristics of those areas that are

invisible in the scalp EEG. In future planned experiments, it may

be possible to resolve this issue through conjoint fMRI and depth

electrode studies.

The tri-PLS2 method introduced in this paper is an example of

multimodal image fusion, which takes advantage of the spatial

resolution of the fMRI, as well as the temporal resolution of the
EEG. This data analytic approach is capable of parsimoniously

determining which EEG components are significant in the final

analyses, and of revealing new features of the data by differenti-

ating regions exposed within the fMRI data from those indicated

solely through inverse solutions using the EEG. We are pursuing a

number of improvements to enhance the integration of both types

of data modalities by this method. In the first, we are developing a

variant of tri-PLS2 that will estimate the spatial components, not

on the scalp topography, as is done now, but instead directly in the

source space. This would integrate source localization into the

procedure rather than applying it as a postprocessing step for the

topographies of the EEG atoms. Additionally, the autocorrelation

of both the EEG and BOLD time series will be taken into account,

whereas the model presented here ignores this information. Final-

ly, it may well be that there are interactions between time,

topography, and frequency spectrum that the current algorithm

cannot account for.
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Appendix A. Tri-PLS2 algorithm

To calculate an atom of the tri-PLS2 model, we rewrite the

model for dependent and independent variables taking only one

atom, k, into account. Here the independent variable is the time-

varying EEG spectrum, convolved previously with the hemody-

namic response function, which is a three-way array S. The

dependent variable is the fMRI 2D matrix F. The structural models

then are

Ŝdwt ¼ adkbwkctk ðA:1Þ

and

F̂st ¼ uskvtk : ðA:2Þ

The score vectors are those dependent on time (temporal signa-

tures), i.e., ck = (c1k,. . .,ctk,. . .,cNtk)
T and vk = (v1k,. . .,vtk,. . .,vNtk)

T;

the others are also called the weights (spatial and spectral

signatures of the EEG, spatial signature of the fMRI). The indices

t = 1,. . ., Nt, w = 1,. . ., Nw, d = 1,. . ., Nd and s = 1,. . ., Ns represent

time, frequency, channels, and voxels, respectively. For given

weight vectors, the least-squares solution for determining the

score vectors are:

ctk ¼
XNw

w¼1

XNd

d¼1

Sdwtadkbwk ðA:3Þ
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and

vtk ¼
XNs
s¼1

Fstusk : ðA:4Þ

Our problem is to find a set of normalized weight vectors, ak, bk,

and uk, which produce score vectors, ck and vk, having maximal

covariance. The objective function to be maximized is:

max
a
k
;b

k
;u

k

XNt

t¼1

ctkvtk ctk ¼
XNw

w¼1

XNd

d¼1

Sdwtadkbwk ^ vtk ¼
XXXXXXNs

s¼1

Fstusk

�����
#"

ðA:5Þ

For simplicity, the restriction of normalization on the weight

vectors is not made explicit. Eq. (A.5) is not strictly correct

because there is no correction for degrees of freedom, but as this

correction is constant for a given atom, it will not affect the

maximization. Eq. (A.5) also does not express the covariance if S

and F have not been centered.

The next procedure is performed in two ways. First, Eq. (A.5)

could be taken to:

max
a
k
;b

k

XNt

t¼1

XNw

w¼1

XNd

d¼1

Sdwtvtkadkbwk

" #
¼ max

ak ;bk

XNw

w¼1

XNd

d¼1

zdwtadkbwk

" #
; ðA:6Þ

where zdwk ¼
P

t¼1
Nt Sdwtvtk are the elements of an auxiliary matrix,

Zk. If one writes Eq. (A.6) in matrix notation, the equation will

become:

max
a
k
;b

k

½bT
k Zkak 
Z ðbk ; kk ; akÞ ¼ SVDðZk ; 1Þ: ðA:7Þ

In other words, the weight vectors, ak and bk can be computed

from the first component of a singular value decomposition of Zk

[SVD(Zk, 1)]. This follows directly from the properties of SVD.

Second, substituting in Eq. (A.5) the corresponding score

vector for the dependent variable:

max
uk

XNt

t¼1

XNs

s¼1

Fstctkusk

" #
¼ max

uk

XNs

s¼1

yskusk

" #
; ðA:8Þ

where ysk ¼
P

t¼1
Nt Fstctk are the elements of an auxiliary vector yk.

Since uk is restricted to be normalized, the maximum value of the

expression (A.8) is reached when uk is a unit vector in the same

direction as yk. Therefore, the solution is:

uk ¼
yk

NykN
¼ FTck

NFTckN
ðA:9Þ

On the other hand, through the models of the data sets given in

Eqs. (A.1) and (A.2), the prediction model between S and F is

found by using a regression model for the so-called inner relation

(established for the loadings matrices, i.e., for all atoms at the same

time):

V ¼ CX þ Ev:

This expression ensures that the maximum covariance restriction

holds, and allows prediction of new samples of dependent varia-

bles. As the different atoms for score vectors are not always
orthogonal, all of these atoms must be taken into account in

calculating regression coefficients. The regression thus leads to:

xk ¼ ðCTCÞ�1CTvk : ðA:10Þ

Finally, we can summarize the algorithm as follows:
1. Center S and F.

2. Let vk equal a column in F.

3. Atom k = 1.

4. Compute matrix Zk using S and vk.

5. Determine ak and bk from Eq. (A.7).

6. Calculate ck from Eq. (A.3).

7. Compute uk from Eq. (A.9).

8. Compute vk from Eq. (A.4).

9. If the results converge, continue. Otherwise go to step 4.

10. Do the regression, finding xk from Eq. (A.10).

11. St = St � ctkbkak
T (for all t) and F = F � Cxku

T
k .

12. k = k + 1. Repeat from 4 until F is properly described.
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1997. Testing topographic differences between event related brain

potentials by using non-parametric combinations of permutation tests

(published erratum appears in Electroencephalogr. Clin. Neurophysiol.

107(1998 Nov)(5): 380–381). Electroencephalogr. Clin. Neurophy-

siol. 102 (3), 240–247.

Goldman, R.I., Stern, J.M., Engel, J., Cohen, M.S., 2000. Acquiring

simultaneous EEG and functional MRI. Clin. Neurophysiol. 111,

1974–1980.

Goldman, R.I., Stern, J.M., Engel, J., Cohen, M.S., 2002. Simulta-

neous EEG and fMRI of the alpha rhythm. NeuroReport 13 (18),

2487–2492.

Gonzalez-Andino, S.L., Blanke, O., Lantz, G., Thut, G., Grave de Peralta,

R., 2001. The use of functional constraints for the neuroelectromagnetic

inverse problem: alternatives and caveats. IJBEM 3, 1.

Harshman, R.A., 1970. Foundations of the PARAFAC procedure: models

and conditions for an ‘explanatory’ multi-modal factor analysis. UCLA

Work. Pap. Phon. 16, 1–84.

Horwitz, B., Poeppel, D., 2002. How can EEG/MEG and fMRI/PET data

be combined? Hum. Brain Mapp. 17, 1–3.

Ioannides, A.A., 1999. Problems associated with the combination of

MEG and fMRI data: theoretical basis and results in practice. In:

Yoshimoto, T., Kotani, M., Kuriki, S., Karibe, H., Nakasato, N.

(Eds.), Recent Advances in Biomagnetism. Tohoku University.

Press, Sendai, pp. 133–136.

Kiers, H.A.L., 1991. Hierarchical relations among three-way methods.

Psychometrica 56, 449–470.
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There is much current interest in identifying the anatomical and functional circuits that are the basis
of the brain’s computations, with hope that functional neuroimaging techniques will allow the in vivo
study of these neural processes through the statistical analysis of the time-series they produce. Ideally,
the use of techniques such as multivariate autoregressive (MAR) modelling should allow the
identification of effective connectivity by combining graphical modelling methods with the concept of
Granger causality. Unfortunately, current time-series methods perform well only for the case that the
length of the time-series Nt is much larger than p, the number of brain sites studied, which is exactly
the reverse of the situation in neuroimaging for which relatively short time-series are measured over
thousands of voxels. Methods are introduced for dealing with this situation by using sparse MAR
models. These can be estimated in a two-stage process involving (i) penalized regression and (ii)
pruning of unlikely connections by means of the local false discovery rate developed by Efron.
Extensive simulations were performed with idealized cortical networks having small world topologies
and stable dynamics. These show that the detection efficiency of connections of the proposed
procedure is quite high. Application of the method to real data was illustrated by the identification of
neural circuitry related to emotional processing as measured by BOLD.

Keywords: functional connectivity; fMRI; variable selection;
sparse multivariate autoregressive model; graphical model
1. INTRODUCTION
There is much current interest in identifying the

anatomical and functional circuits that we believe are

the basis of the brain’s computations (Varela et al.

2001). Interest in neuroscience has shifted away from

mapping sites of activation, towards identifying the

connectivity that weave them together into dynamical

systems (Lee et al. 2003; Bullmore et al. 2004).

More importantly, the availability of functional

neuroimaging techniques, such as fMRI, optical

images, and EEG/MEG, opens hope for the in vivo
study of these neural processes through the statistical

analysis of the time-series they produce. Unfortunately,

the complexity of our object of study far outstrips the

amount of data we are able to measure. Activation

studies already face the daunting problem of analysing

large amounts of correlated variables, measured on

comparatively few observational units. These problems

escalate when all pairs of relations between variables

are of interest—a situation that has led some to

consider that the concept of connectivity itself is

‘elusive’ (Horwitz 2003).
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969
A neural system is an instance of a complex network.

A convenient representation is that of a graph (figure 1)

defined by a set of nodes that represents observed or

unobserved (latent) variables, a set of edges, that

indicate relations between nodes, and a set of probability

statements about these relations (Speed & Kiiveri 1986;

Wermuth & Lauritzen 1990; Cowell et al. 1999; Jensen

2002; Jordan 2004). Graphs, with only undirected

edges, have been extensively used in the analysis of

covariance relations (Wermuth & Lauritzen 1990;

Wermuth & Cox 1998, 2004), but do not attempt

causal interpretations. Neuroimaging studies based on

this type of model will identify what Friston has defined

as ‘functional connectivity’ (Friston 1994). To apply

graphical models to functional neuroimaging data, one

must be aware of the additional specificity that they are

vector-valued time-series, with ytðp!1ÞZ fyt;ig1%i%p;1%t%Nt

the vector of observations at time t, observed at Nt time

instants. The p components of the vector are sampled at

different nodes or spatial points in the brain. There has

been much recent work in combining graphical models

with multiple time-series analysis. An excellent example

of the use of undirected graphs in the frequency domain

is Bach & Jordan (2004) with applications to fMRI

functional connectivity in Salvador et al. (2005).

A different line of work is represented by Pearl

(1998, 2000, 2003) and Spirtes et al. (1991, 1998,

2000), among others, who studied graphs with directed
q 2005 The Royal Society
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Figure 1. Directed graphical model of a (hypothetical) brain-
causal network. Each node in the graph denotes a brain
structure. An arrow between two nodes indicates that one
structure (parent) exerts a causal influence on another node
(child), a relation also known as ‘effective connectivity’. For
functional images (EEG or fMRI), observations at each node
are time-series. It should be noted that, optimally, time-series
from all brain regions should be analysed simultaneously.
Ignoring, for example, the amygdala might lead to erroneous
conclusions about the influence of visual cortex on FFA, if
only the latter were observed. A necessary (but not sufficient)
condition for effective connectivity is that knowledge of
activity in the parent improves prediction in the child
(Granger causality). It is assumed that the set of directed
links in real networks is sparse and therefore can be recovered
by regression techniques that enforce this property.
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edges that represent causal relations between variables.
In the context of neuroimaging, searching for causality
is what Friston terms the identification of effective
connectivity. We will be concerned with this more
ambitious type of modelling.

For functional neuroimages, the arrow of time may
be used to help in the identification of causal relations.
To be more specific, we model these time-series by
means of a linear (stationary) multivariate autoregres-
sive (MAR) model (Hamilton 1994; Harrison et al.
2003). While this type of model is very restrictive and
brain-unrealistic, it will serve our purpose of develop-
ing methods for identifying connectivities in large
complex neural networks for which the number of
nodes p is very large compared with Nt. The general
MAR model reads:

yt Z
XNt

kZ1

AkytKk Cet t ZNkC1;.;Nt (1.1)

The dynamics of the process modelled are determined
by the matrices of autoregressive coefficients
Akðp!pÞZ faki;jg1%i;j%pthat are defined for different time
lags k and the spatial covariance matrix Sðp!pÞ of etðp!1Þ,
the white-noise input process (innovations). MAR
modelling has been widely applied in neuroscience
research (Baccala & Sameshima 2001; Kaminski et al.
2001; Harrison et al. 2003).

Note that the coefficients aki;j measure the influence
that node j exerts on node i after k time instants.
Knowing that aki;j is non-zero is equivalent to establish-
ing effective connectivity and is also closely related to
the concept of Granger causality (Granger 1969;
Kaminski et al. 2001; Goebel et al. 2003; Hesse et al.
2003; Valdes-Sosa 2004; Eichler 2005). The merge of
causality analysis (Pearl 1998, 2000; Spirtes et al. 1991,
2000) with multi-time-series theory has originated
graphical time-series modelling as exemplified in
Brillinger et al. (1976); Dahlhaus (1997); Dahlhaus
et al. (1997); Eichler (2004; 2005).
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Unfortunately there is a problem with this approach
when dealing with neuroimaging data: the brain is a
network with extremely large p, in the order of
hundreds of thousands. A ‘curse of complexity’
immediately arises. The total number of parameters
to be estimated for model (1.1) is
sZNk,p

2C ðp2CpÞ=2, a situation for which usual
time-series methods break down. One approach to
overcome this curse of complexity is to pre-select a
small set of regions of interest (ROI), on the basis of
prior knowledge. Statistical dependencies may then be
assayed by standard methods of time-series modelling
(Hamilton 1994) that in turn are specializations of
multivariate regression analysis (Mardia et al. 1979).
The real danger is the probable effect of spurious
correlations induced by the other brain structures not
included for study. Thus, the ideal would be to develop
MAR models capable of dealing with large p.

An alternative to using ordinary multivariate
regression techniques for model (1.1) is to attempt
regression based on selection of variables. This could
drastically reduce the number of edges in the network
graph to be determined, effectively restricting our
attention to networks with sparse connectivity. That
this is a reasonable assumption is justified by studies of
the numerical characteristics of network connectivity in
anatomical brain databases (Sporns et al. 2000;
Stephan et al. 2000; Hilgetag et al. 2002; Kotter &
Stephan 2003; Sporns et al. 2004). The main objective
of this paper is to develop methods for the identifi-
cation of sparse connectivity patterns in neural systems.
We expect this method to be scaled, eventually, to cope
with hundreds or thousands of voxels. Explicitly, we
propose to fit the model with sparsity constraints on
Akðp!pÞ and Sðp!pÞ.

Researchers into causality (Scheines et al. 1998;
Pearl 2000) have explored the use of regression by the
oldest of variable selection techniques—stepwise selec-
tion for the identification of causal graphs. This is the
basis of popular algorithms such as principal com-
ponents embodied in programmes such as TETRAD.
These techniques have been proposed for use in
graphical time-series models by Demiralp & Hoover
(2003). Unfortunately these techniques do not work
well for large p/Nt ratios. A considerable improvement
may be achieved by stochastic search variable selection
(SSVS), which relies on Markov chain–Monte Carlo
(MCMC) exploration of possible sparse networks
(Dobra et al. 2004; Jones & West 2005). These
approaches, however, are computationally very inten-
sive and not practical for implementing a pipeline for
neuroimage analysis.

A different approach has arisen in the data mining
context, motivated to a great extent by the demands
posed by analysis of micro-array data (West 2002;
Efron et al. 2004; Hastie & Tibshirani 2004; Hastie
et al. 2001). This involves extensive use of Bayesian
regression modelling and variable selection, capable of
dealing with the p[Nt situation. Of particular interest
is recent work in the use of penalized regression
methods for existing variable selection (Fan & Li
2001; Fan & Peng 2004) which unify nearly all
variable selection techniques into an easy-to-
implement iterative application of minimum norm or
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ridge regression. These techniques have been shown
to be useful for the identification of the topology of
huge networks (Leng et al. 2004; Meinshausen &
Bühlmann 2004).

Methods for variable selection may also be com-
bined with procedures for the control of the false
discovery rates (FDR) (Efron 2003, 2004, 2005) in
situations where a large number of null hypothesis is
expected to be true. Large p in this case becomes a
strength instead of a weakness, because it allows the
non-parametric estimation of the distribution of the
null hypotheses to control false discoveries effectively.

In a previous paper, Valdes-Sosa (2004) introduced
a Bayesian variant of MAR modelling that was designed
for the situation in which the number of nodes far
outnumbers the time instants (p[Nt). This approach
is, therefore, useful for the study of functional neuro-
imaging data. However, that paper stopped short of
proposing practical methods for variable selection. The
present work introduces a combination of penalized
regression with local FDR methods that are shown to
achieve efficient detection of connections in simulated
neural networks. The method is additionally shown to
give plausible results with real fMRI data and is capable
of being scaled to analyse large datasets.

It should be emphasized that in the context of
functional imaging there are a number of techniques for
estimating the effective connectivity, or edges, among
the nodes of small pre-specified neuroanatomic graphs.
These range from maximum likelihood techniques
using linear and static models (e.g. structural equation
modelling; McIntosh & Gonzalez-Lima 1994) to
Bayesian inference on dynamic nonlinear graphical
models (e.g. dynamic causal modelling; Friston et al.
2003). Almost universally, these approaches require
the specification of a small number of nodes and, in
some instances, a pre-specified sparsity structure, i.e.
elimination of edges to denote conditional indepen-
dence among some nodes. The contribution of this
work is to enable the characterization of graphical
models with hundreds of nodes using the short imaging
time-series. Furthermore, the sparsity or conditional
independence does not need to be specified a priori but
is disclosed automatically by an iterative process. In
short, we use the fact that the brain is sparsely
connected as part of the solution, as opposed to
treating it as a specification problem.

The structure of this paper is as follows. The
subsequent section introduces a family of penalized
regression techniques useful for identifying sparse
effective connectivity patterns. The effectiveness of
these methods for detecting the topology of large
complex networks is explored in §2 by means of
extensive simulations and is quantified by means of
ROC measures. These methods are then applied
together with local FDR techniques to evaluate real
fMRI data. The paper concludes with a discussion of
implications and possible extensions.
2. SPARSE MAR MODELS
We now describe a family of penalized regression
models that will allow us to estimate sparse multivariate
autoregressive (SMAR) models. In the following we
Phil. Trans. R. Soc. B (2005)
shall limit our presentation to first order SMAR models
in which NkZ1. This will simplify the description of
models and methods, allowing us to concentrate on
conceptual issues. Previous studies (Martinez-Montes
et al. 2004; Valdes-Sosa 2004) have shown that first
order MAR models fit fMRI data well (as indicated by
the model selection criteria such as GCV, AIC or BIC).
However, it is clear that for other types of data such as
EEG, more complex models are necessary. All
expressions given below generalize to the more
complete model. In fact, all software developed to
implement the methods described has been designed to
accommodate all model orders.

We first review classical MAR methods. For a first
order MAR equation (1.1) simplifies to:

yt ZA1ytK1 Cet t Z 2;.;Nt (2.1)

where et is assumed to follow a multivariate Gaussian
distribution N(0, S), with zero mean 0(p!1) and
precision matrix SK1

ðp!pÞ.
This model can be recast as a multivariate

regression:

Z ZXBCE EiwNð0;SÞ i Z 1;.;m (2.2)

where we definemZNtK1 and introduce the notation:

Zðm!pÞ Z ½y2;.; yt ;.; yNt�
T Z ½z1;.; zi ;.; zp�;

Bðp!pÞ ZA
T
1 Z ½b1;.;bp�;

X ðm!pÞ Z ½y1/ym�
T;

Eðm!pÞ Z ½e2;/; et ;/; eNt�
T :

Usual time-series methods rely on maximum like-
lihood (ML) estimation of model (2.2), which is
equivalent to finding:

B̂Z arg min
B

jjðZKXBÞjj2S: (2.3)

This has an explicit solution, the OLS estimator:

B̂Z ðXT
XÞK1

X
T
Z: (2.4)

It should be noted that the unrestricted ML estimator of
the regression coefficients does not depend on the
spatial covariance matrix of the innovations (Hamilton
1994). One can therefore carry out separate regression
analyses for each node. In other words, it is possible to
estimate separately each column bi of B:

b̂i Z ðXT
XÞK1

X
T
zi i Z 1;.; p; (2.5)

where zi is the i-th column of Z. It is to be emphasized
that these definitions will work only if m[p. Addition-
ally, it is also well known that OLS does not ensure
sparse connectivity patterns for A1. We must therefore
turn to regression methods specifically designed to
ensure sparsity.

The first solution that comes to mind is to use the
readily available stepwise variable selection methods.
Such is the philosophy of TETRAD (Glymour et al. 1988;
Spirtes et al. 1990). Unfortunately, stepwise methods



Table 1. Derivatives of penalty functions.

type of penalization derivative

LASSO p0lðqÞZl signðqÞ
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IðqOlÞ
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Hard-Threshold p0lðjqjÞZK2ðjqjKlÞC
ridge p0lðqÞZ2lq
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p0f
0
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Figure 2. Penalization functions used for the iterative
estimation of sparse causal relations. At each step of the
iterative process, the regression coefficients of each node with
all others are weighted according to their current size. Many
coefficients are successively down-weighted and ultimately set
to zero—effectively carrying out variable selection. y-Axis:
weight according to current value of a regression coefficient b
(x-axis). Each curve corresponds to a different type of
penalization: heavy line, L2 norm (ridge regression); dashed,
L1 norm (LASSO). Dotted, Hard-Threshold; dash-dot,
SCAD; light line, mixture.
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are not consistent (Hastie et al. 2001). This means that
even increasing the sample size indefinitely (Nt/N)
does not guarantee the selection of the correct set of
non-zero coefficients. This result still holds even if all
subsets of variables are exhaustively explored.

Procedures with better performance are those based
on Bayesian methods in which assumptions about B are
combined with the likelihood by means of Bayes’
theorem. A very popular method is stochastic search
variable selection (SSVS) (George & McCulloch 1997;
George 2000). SSVS is based on a hierarchical
model in which the first stage is just the likelihood
defined by equation (2.1), and the other stage
assumes that the elements of B (b) are each sampled
a priori from a mixture of two probability densities:
p0fp0

ðbÞC ð1Kp0Þfp1
ðbÞ. The density fp0

ðbÞ is concen-
trated around zero, while fp1

ðbÞ has a larger variance.
The decision of sampling from either is taken with
binomial probabilities p0 and (1Kp0), respectively.
When p0 is large, this means we expect the matrix B to
be very sparse. The model is explored using Monte
Carlo–Markov chain techniques. This limits the
application of this method to a rather small number
of nodes p as analysed in Dobra et al. (2004), Dobra &
West (2005) and Jones et al. (2005).

For this reason, we chose to explore other methods as
alternatives to SSVS for variable selection, giving
preference to those that were computationally more
feasible. There has been much recent attention on
different forms of penalized regression models. The
simplest and best known of this family of methods is
ridge regression (Hoerl & Kennard 1970), also known as
quadratic regularization, which substitutes the argu-
ment (2.3) for the following one:

B̂Z arg min
B

jjðZKXBÞjj2S Cl2jjðPBÞjj2: (2.6)

Minimization of this functional leads to the estimator:
Phil. Trans. R. Soc. B (2005)
B̂Z ðXT
XCl2

P
T
PÞK1

X
T
Z; (2.7)

l being the regularization parameter which determines
the amount of penalization enforced. There are very
efficient algorithms based on the singular value
decomposition for calculating these estimators as well
as their standard errors. Forms of ridge regression have
been recently applied (with PZIp) to analyse micro-
array data by West (2002) and (withPa spatial Laplacian
operator) to study fMRI time-series by Valdes-Sosa
(2004). These papers showed the ability of this method
to achieve stable and plausible estimates in the situation
p[n. In the present paper, we explore the feasibility of
using ridge regression as part of a technique for variable
selection. It should be clear that ridge regression does
not carry out variable selection per se. For this reason
it is necessary to supplement this procedure with a
method for deciding which coefficients of B̂ are
actually zero. This will be described in detail below.

Following ridge regression, a number of penalized
regression techniques have been introduced in order to
stabilize regressions and perform variable selection. All
these methods can be expressed as the solution of the
minimization of:

b̂Z arg min
b

kZ–Xbk2 Cl2
Xd
jZ1

pðjbj jÞ: (2.8)

where pðjbj jÞ is the penalty function applied to each
component of the vector of regression coefficients b.
The form of different penalty functions as a function of
the current value of a regression coefficient b is shown
in figure 2. It should be noted that the quadratic
function is the ridge regression described above.
Another type of penalty, perhaps one of the best
known in the statistical learning literature, is the
LASSO (Hastie et al. 2001), or L1 norm. This method
has been recently implemented with great compu-
tational efficiency (Efron et al. 2004).

During the process of implementing algorithms for
each type of penalty function, advantage was taken of
the recent demonstration by Fan & Li (2001), Fan &
Peng (2004), Hunter (2004) and Hunter & Lange
(2004) that estimation of any one of many penalized
regressions can be carried out by iterative application of
ridge regression:

b̂
kC1
i Z ðXT

XCl2
Dðb̂

k
i ÞÞX

T
zi i Z 1;.; p: (2.9)

where Dðb̂
k
i Þ, a diagonal matrix is defined by DðqÞZ
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Figure 3. Idealized cortical models used to test regression
methods for the identification of sparse graphs were simulated
by a ‘small world’ network topology. Nodes resided on a two-
dimensional grid on the surface of a torus, thus imposing
periodic boundary conditions in the plane. For each simu-
lation, a set of directed connections was first formed with a
distribution crafted to induce the ‘small world effect’.
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diagðp0lðqkÞ=jqkjÞ kZ1;.; p and p0lðqÞ is the derivative
of the penalty function being evaluated.

The algorithm described by Fan & Peng (2004)
unifies a large number of penalized regression tech-
niques. These are summarized in table 1, in which the
derivatives of the penalty functions are provided.

The reason that this algorithm works may be
inferred from figure 2. At each step of the iterative
process, the regression coefficients of each node with all
others are weighted according to their current size.
Many coefficients are successively down-weighted and
ultimately set to zero—effectively carrying out variable
selection in the case of the LASSO, Hard-Threshold
and SCAD penalization. It must be emphasized that
the number of variables set to zero in any of the
methods described will depend on the value of the
regularization parameter l with higher values selecting
fewer variables. In this paper, the value of the tuning
parameter l was selected to minimize the generalized
crossvalidation criterion (GCV).

The penalizations explored in this article for variable
selection are:
The strengths of the connections between parents and children
were sampled from a Gaussian distribution. Directed links
(i)
Phil.
ridge: the L2 norm;

are shown on the surface of the torus for one sample network.
(ii)
 LASSO: the L1 norm;
(iii)
 Hard-Thresholding;

(iv)
 SCAD: smoothly clipped absolute deviation pen-

alty of Fan & Li (2001); and

(v)
 MIX: mixture penalty.
It came as a pleasant surprise to us during the
programming of the variable selection algorithms, that
the SSVS of George & McCulloch (1997) can also be
expressed as a penalized regression with penalty
Klnðp0fp0

ðbÞC ð1KpoÞfp1
ðbÞÞ. We therefore added to

the comparisons this ‘quick and dirty’ implementation
of SSVS as the MIX criteria which also carries out
automatic variable selection.

The specific implementation of penalized regression
used in this article is that of the maximization–
minorization (MM) algorithm (Hunter 2004; Hunter &
Lange 2004), which exploits an optimization technique
that extends the central idea of EM algorithms to
situations not necessarily involving missing data, nor
even ML estimation. This new algorithm retains
virtues of the Newton–Raphson algorithm. All algo-
rithms were implemented in MATLAB 7.0 and will be
made available on the website of this journal (see
Electronic Appendix).

Additionally, the iterative estimation algorithm
allows us to compute the covariance matrix of the
resulting regression coefficient via a ‘sandwich for-
mula’. This allows the estimation of standard errors for
different contrasts of interest. For example, these
standard errors were used to define a t statistic for
each autoregressive coefficient to test its presence, or to
calculate confidence intervals for different contrasts.
3. PERFORMANCE OF PENALIZED REGRESSION
METHODS WITH SIMULATED DATA
(a) Description of simulations

In order to measure the performance of different
penalized regression methods for estimating SMAR
Trans. R. Soc. B (2005)
models, a number of simulations were carried out. For
this purpose, a universe of idealized cortical models
was defined based on the concept of ‘small world
topology’ (Watts & Strogatz 1998; Albert & Barabasi
2002; Jirsa 2004; Sporns et al. 2004; Sporns & Zwi
2004; Sporns 2005).

The simulated ‘cortex’ was defined as a set of nodes
comprising a two-dimensional grid on the surface of a
torus (figure 3). This geometry was chosen to avoid
special boundary conditions since the network is
periodic in the plane in both dimensions. For each
simulation a set of directed connections was formed
randomly. Following Sporns & Zwi (2004), the
existence of a directed connection between any nodes
i and j was sampled from a binomial distribution with
probabilities pij. These probabilities were in turn
sampled from a mixture density:

pij Zpij exp
r2
ij

a2

 !
C ð1KpijÞg:

The Gaussian component of the mixture (depending on
distance) will produce short-range connections and
induce high clustering among nodes. The uniform
component of the mixture ensures the presence of long-
range connections which induce short-path lengths
between any pairofnodes in the network. The parameters
of the mixture (a, g) were tuned by hand to produce a
‘small world’ effect, which was in practice, possible with
only a small proportion of uniformly distributed connec-
tions. The directed links for one sample network are
shown on the surface of the torus in figure 3.

A more detailed view of a sample small-world
network is shown in figure 4 which shows in (a)
the two-dimensional view of the links between
nodes and in (b), their connectivity matrix. Once
the connectivity matrix of the network was defined,
the strengths of the connections between parents
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Figure 4. Connectivity structure of the simulated cortical network shown in figure 3. This type of small-world network has a high
probability of connections between geographical neighbours and a small proportion of larger range connections. The network
mean connectivity was: 6.23; the scaled clustering: 0.87; the scaled length: 0.19. (a) Two-dimensional view of the links between
nodes. (b) Connectivity (0–1) matrix in with a row for each node and non-zero elements for its children.
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Figure 5. Simulated fMRI time-series generated by a first
order multivariate autoregressive model ytZA1ytK1Cet, the
autoregressive matrix being sampled as described in figures 3
and 4. The innovations et (noise input) were sampled from a
Gaussian distribution with a prescribed inverse covariance
matrix S-1 as described in figure 6. Y-axis: simulated BOLD
signal, x-axis: time. The effect of different observed lengths of
time-series (N) on the detection of connections was studied.
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and children were sampled from a Gaussian distribution

truncated around zero with a variable threshold t. With

higher t, only stronger connections were allowed, thus

increasing the ‘signal to noise ratio’ for the detection of

network connections. The resulting matrix of (auto)-

regressive coefficients A1 of the network has the same

sparsity structure as that of the connectivity matrix.

Those A1 with singular values greater than one were

rejected from the simulation, since our purpose was to

study stable SMAR models.

Simulated fMRI time-series were generated by the

first order SMAR model (2.1) with the connectivity

matrix obtained as described above. A random starting

state was selected, and then a ‘burning in’ period of

several thousand samples was first generated and

discarded to avoid system transients. Subsequent

samples were retained for the analyses presented

below. The result of this process, a typical fMRI

simulation is shown in figure 5.

Simulations with different types of innovations et
were carried out. They differed in the type of inverse

covariance matrices from which they were generated.

Three variants of connectivity patterns for the spatial

covariance S of the innovations were used to simulate

fMRI time-series. Shown in figure 6 are the connectivity

matrices for the precisions SK1 (a) spatial indepen-

dence with a diagonal precision matrix, (b) nearest-

neighbour dependency with partial autocorrelations

existing only between nodes close to each other,

(c) nearest-neighbour topology with an additional

‘master’ node linked to all other nodes in the network.
(b) Comparison of methods

It must be remembered that the purpose of the

simulations was to generate time-series from which

the network topology of the idealized cortical network

could be estimated. As is usual in the evaluation of

diagnostic methods, a number of indices were calcu-

lated to evaluate the performance of different penalized
Phil. Trans. R. Soc. B (2005)
regression techniques. For reference purposes, the

definition of these indices is summarized in table 2.

The actual sensitivity and specificity of each

regression method depends, of course, on the threshold

selected to reject the null hypothesis for the t statistic of

each regression coefficient. Overall performance for

each regression method under different conditions was

measured by means of their receiver operating charac-

teristic (ROC) curves which are, as is well known, the

representation of the tradeoffs between sensitivity (Sn)

and specificity (Sp) (table 2). The plot shows false

alarm rate (1KSp) on the x-axis and detection rate (Sn)

on the y-axis. ROC curves are further summarized by

their areas, which we shall call for brevity the ‘detection

efficiency’. In all comparisons, at least 25 simulated



Table 2. Definition of quantities used for assessing the
methods network reconstruction.

quantity definition

number of true edges TPCFN
number of zero-edges TNCFP
significant edges TPCFP
detection rate TP/(TPCFN)
false alarm rate FP/(TNCFP)
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Figure 6. Connectivity matrices for the precisions SK1. Three situations were explored: (a) spatial independence with a diagonal
precision matrix, (b) nearest-neighbour dependency with partial autocorrelations existing only between nodes close to each
other, (c) nearest-neighbour topology with a ‘master’ node linked to all other nodes in the network.
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fMRI series were generated. For each comparison, each
method was represented by its worst case scenario, the
ROC curve with the lowest detection efficiency for all
25 replications. A typical example of ROC curves is
shown in figure 7, which corresponds to ridge
regression applied to a simulated network with
pZ100 nodes and a recorded length of NtZ200 time
points. The dark line corresponds to a simulated fMRI
generated with spatially independent noise, as well as
with a high signal to noise ratio. The ROC curve is well
above the diagonal line that would be the result with a
random detection procedure.

From the whole set of simulations a number of
findings can be summarized.

In the first place, the detection efficiency in all
simulations was well above the chance level, validating
the hypothesis that penalized regression techniques are
useful for the detection of connectivity topologies in
complex networks. The difference between penaliza-
tion techniques was rather disappointing, as summa-
rized in figure 8 which shows that all methods are
roughly equivalent with respect to detection efficiency.
Exceptions are the hard threshold penalty which
performs slightly worse than the others and ridge
regression that performs slightly better. In view of the
ease with which ridge regression is computed, there
seems to be no point in using more complicated
techniques. For this reason, from now onwards, unless
explicitly stated, all results presented and discussed
correspond to ridge regression.

With regard to the p/Nt ratio, figure 8 shows the
detection efficiency as a function of Nt for a fixed
number of nodes ( pZ100). All methods perform
equally well when the number of nodes is small with
regard to the number of time points. Efficiencies
decrease uniformly when the number of data points
decreases but are well above chance levels even for
pZ4Nt.

Detection efficiency depends monotonically on the
S/N ratio connection strength. Figure 9 shows that even
with networks with small connection strengths relative
to the system noise, good detection efficiencies are
possible (LASSO penalization).

Strong spatial correlations in the innovations tended
to diminish the detection efficiency for A1 with respect
to the uncorrelated case. The worse performance is
with innovations generated from precision matrices
with strong structure and a master driving node. The
Phil. Trans. R. Soc. B (2005)
thin line in figure 7 corresponds to a time-series
generated with both spatially correlated innovations

(nearest-neighbour topology), as well as with a low
signal to noise ratio. Note the interaction of both
factors that produce marked decreases of detection
efficiency when compared with the situation denoted

by the thick line (high S/N and no spatial correlation).
For the real fMRI experiments, we must select a

threshold for rejecting the null hypothesis. This
involves multiple comparisons for a large number of

autoregressive coefficients. The simulations gave us the
opportunity of checking the usefulness for this purpose
of the FDR procedure introduced by Benjamini &
Hochberg (1995). Given a set of p hypotheses, out of
which an unknown number p0 are true, the FDR

method identifies the hypotheses to be rejected, while
keeping the expected value of the ratio of the number
of false rejections to the total number of rejections
below q, a user-specified control value. In the present

paper we use a modification of this procedure, the
‘local’ FDR (which we shall denote as ‘fdr’ in lower
case) as developed by Efron (2003, 2004, 2005).
Multiple tests are modelled as being sampled from the

mixture of two densities given by fðzÞZp0f0ðzÞCp1f1ðzÞ,
which are estimated with non-parametric methods. An
R program LOCFDR is available from the CRAN website
for this calculation. The fdr procedure was used

to analyse the same data used to generate figure 7.
Figure 10 shows the results of applying locfdr which
estimates the t statistics for all regression coefficients
as the mixture of two of the null and alternative
densities. Figure 11 shows the fdr curve produced

which allows the selection of a threshold with a given
local false-positive rate. Looking back to figure 7, the
dashed line shows the performance of the local fdr
thresholds calculated without knowledge of the true



Figure 10. The local FDR (fdr) is ideal for the detection of
sparse connections. If there are few connections, then testing
for links between all nodes should lead to a sample of test
statistics for which the null hypothesis predominates. The
distribution of the statistics can therefore be modelled as a
mixture of the density of null hypothesis with that of the
alternative hypothesis. These are separated by non-para-
metric density estimation as shown in this figure, in which the
thick line denotes the estimated null distribution and the thin
one the estimated alternative distribution for the ridge
regression example shown in figure 7 (thick line). y-Axis:
counts, x-axis: values of the t statistics for estimated
regression coefficients.
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Figure 7. Efficiency of ridge regression for the detection of
causal connections in simulated fMRI from a network with
pZ100 nodes and a recorded length of NtZ200 time points,
as measured by receiver operating curves (ROC). y-Axis:
probability of detection of true connections, x-axis: prob-
ability of false detections. The dark line corresponds to an
fMRI generated with spatially independent noise as well as
with a high signal to noise ratio. The thin line corresponds to a
time-series generated with spatially correlated noise (nearest
neighbour), as well as with a low signal to noise ratio. Note the
decreases of detection efficiency with these factors. The
dashed line shows the performance of the local false discovery
rate thresholds calculated without knowledge of the true
topology of the network. Note the excellent correspondence
at low false-positive rates.
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Figure 8. Effect of the ratio of network size (p) to temporal
sample size (Nt) on the detection efficiency for different
penalized regression methods. The number of nodes in the
network was kept at pZ100. y-Axis: area under ROC curve.
x-Axis: sample size (N). Though efficiency decreases with
smaller sample sizes, all methods perform well above chance
even for pZ4N. Ridge regression dominates the other
methods for pZN with no significant differences at other
p/Nt ratios
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Figure 9. Effect of signal to noise ratio of network connectivity
generation on efficiency of detection by LASSO. y-Axis: area
under the ROC, x-axis: signal to noise ratio.
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topology of the network. Note the excellent correspon-
dence between the fdr and the ROC curve at low false-
positive rates.
4. ANALYSIS OF FMRI DATA
A combination of ridge regression and local FDR was
used to analyse fMRI data recorded during a face
processing experiment. No attempt was made to reach
Phil. Trans. R. Soc. B (2005)
exhaustive substantive conclusions about the experi-

ment analysed, since the purpose of this exercise was

only to demonstrate the feasibility of working with the

new methods. The experimental paradigm consisted of

the presentation of faces of both men and women under

the following conditions:

Condition 1: static faces with fearful expressions

(SFF);

Condition 2: neutral faces (with no emotional

content), (NF);

Condition 3: dynamic fear faces (in this condition

faces are morphed from neutral emotional content to

fear; DFF).

The subject was asked to count the number of faces

that belonged to women. Stimuli were presented in a



Condition 1 Condition 2 Condition 3

1 2 3

40s
block design

Task: to detect women

…

Figure 12. fMRI acquisition: the experimental paradigm
consisted of visual stimuli presented under three conditions.
Condition 1, static fearful faces, (SFF); Condition 2, neutral
faces (with no emotional content), (NF); Condition 3,
dynamic fearful faces (in this condition faces are morphed
from neutral emotional content to fear; DFF). A general
linear model was posited that included not only a different
mean level mC vector, but also a different autoregressive
matrix AC

1 for each condition C. Thus, the model explores
changes across voxels not only of mean level of activity but
also of connectivity patterns.
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Figure 11. The local false discovery of the ridge regression
example of figure 7. y-Axis: fdr, x-axis: t statistic for estimated
regression coefficients.
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block design with the following order: SFF—NF—
DFF. Each block lasted 40 s and was repeated six
times. The experiment duration was 720 sZ12 min.
The duration of each stimulus was 1 s for each
condition. Stimuli presentation and synchronization
to the MR scanner was performed using COGENT

modelling software v.2.3 (http://cogent.psyc.bbk.ac.uk/;
figure 12).

Images were acquired using a 1.5 T Symphony
Scanner, Siemens, Erlangen, Germany. Functional
images were acquired using a T2* weighted echo planar
sequence in 25 oblique slices (interleave acquisition).
The EPI sequence was defined by: TEZ60 ms,
TRZ4000 ms, flip angle: 90 8, FOVZ224 mm,
slice thickness: 3.5 mm, acquisition matrixZ64!64.
The number of scans recorded was 185. The first five
scans were rejected for the analysis because of T1
saturation effect. A high resolution anatomical
image acquisition was also acquired using a T1
MPRAGE sequence (TEZ3.93 ms/TRZ3000 ms),
voxel sizeZ1!1!1 mm3, FOVZ256 mm. Matrix
sizeZ256!256.

The fMRI data were first analysed using the
STATISTICAL PARAMETRIC Mapping Software package
SPM2 (www.fil.ion.ucl.ac.uk/spm/software/spm2/).
Preprocessing with SPM was restricted to the following
steps: (i) slice time correction (using trilinear inter-
polation); (ii) motion correction; (iii) unwarping.
No temporal smoothing was used. As a preliminary
check, using standard SPM procedures for the com-
parison of conditions it was possible to show activation
of fusiform face area (FFA) as well as involvement of
limbic structures to the presentation of fearful faces.

Inspection of the fMRI time-series for all fMRI
voxels revealed a rhythmic artefact, synchronous for all
voxels that was eliminated by suppression of the first
pair of singular vectors in the SVD decomposition of
the raw data matrix. In order to reduce the spatial
dimensions of the data, the subject’s MRI time was
segmented into 116 different structures using an
automated procedure and based on the macroscopic
anatomical parcellation of the MNI MRI single-
subject brain used by Tzourio-Mazoyer et al. (2002).
Phil. Trans. R. Soc. B (2005)
The fMRI time-series data were spatially averaged over
these ROI to yield 116 time-series.

For the analysis of these data, model (2.1) was
expanded to:

yt Zdt CmC
t CA

C
1 ytKk Cet t Z 2;.;N ; (4.1)

where dt is a drift term estimated by a second-order
polynomial defined over the whole experiment, mC is
the mean level for conditions and AC

1 the condition-
dependent autoregressive matrices. Thus, the model
explores changes across voxels, not only of mean
level of activity, but also of connectivity patterns.
We decided to compare conditions SFF and DFF
(fearful faces). The model was fitted by means of
ridge regression (with no regularization on the drift
and condition mean effects). t Statistics were computed
for the relevant contrasts.

Figure 13 shows the tomography of the t statistics
contrasting the average of the fearful face means ðmSFF

ðmSFFCmDFFÞ=2 with that of neutral faces mNF. The
map is thresholded using the local FDR (fdr) as
explained above with qZ0.01. Note the activation of
the FFA area which was very similar to that obtained
with the analysis carried out with SPM2.

A similar analysis was carried out with the connec-
tivity matrices (figure 14). The contrast compared the
pooled estimate of fearful faces ðASFF

1 CADFF
1 Þ=2 to that

of neutral faces (ANF
1 ). Graphs are constructed with

only those edges which fell above the fdr threshold
for the t statistics of the contrast. Both (a) and (b) of
figure 14 show the same data with a more schematic
and a more realistic rendering, respectively. It is
interesting to note the involvement of brain structures
involved in processing emotional stimuli. Absent are
connections to FFA which have approximately the
same level in all face conditions.
5. DISCUSSION
This paper proposes a method for identifying large scale
functional connectivity patterns from relatively short

http://cogent.psyc.bbk.ac.uk/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/


Figure 13. Tomography of t statistics contrasting fearful face means ðmSFFCmDFFÞ=2 with that of neutral faces mNF. t-Values are
obtained by Bayesian ridge regression and thresholded using the local FDR (fdr) as explained in figures 10 and 11. Note the
activation of the FFA which was very similar to that obtained with the SPM package.

Table 3. Effect on detection efficiency of different spatial
correlation patterns of the innovations for a network with
pZ100 and NtZ60.

(The two columns correspond to the detection efficiencies for
estimates that do not take into consideration SK1 and those
that do.)

SK1 detection efficiency
for A1 estimated
alone

detection efficiency
for A1 estimated
with information
about SK1

diagonal 0.8001 0.8012
nearest neighbour 0.7873 0.7880
nearest neighbour

with master
node

0.6747 0.6298
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time-series of functional neuroimages. The method is

based on estimating SMAR models by a two-stage

process that first applies penalized regression (Fan &

Peng 2004), and is then supplemented by pruning of

unlikely connections by use of the local FDR procedure

developed by Efron (2003). The methods are demon-

strated to perform well in identifying complex patterns

of network connectivity by means of simulations on an

idealized small world cortical network. These simu-

lations also show that the simplest of the methods, ridge

regression, performs as well as more sophisticated and

recent techniques. This does not rule out that the

performance of other penalized techniques might be

improved, for example, by a better estimate of the

regularization parameter, just to mention one possi-

bility. Of particular interest is the complete exploration,

not carried out in the present project owing to time

constraints, of the mixture penalties that provide a

bridge between SSVS (George & McCulloch 1997) and

penalized regression techniques.

The simulations also highlight an important area for

improvement. The detection efficiency of penalized

regression decreases with unobserved correlations

between the inputs of the system which in graphical

models correspond tounobserved latentvariables. This is

in agreement with theoretical insights provided by

statistical analyses of causality (Pearl 1998), as well as

being part of the accumulated experience of time-series

analysis in the neurosciences (Kaminski et al. 2001). Part

of the problem is the relative unreliability of estimating

very large dimensional covariance matrices. Inspection of
Phil. Trans. R. Soc. B (2005)
table 3 shows that estimation and use of the covariance
matrix of the innovations does not improve the detection
efficiency for autoregressive coefficients.

The assumption of sparsity of neural connections
has been supported by quantitative studies of databases
of neural connections (Hilgetag et al. 2002). Sparseness
is a central concept of modern statistical learning
(Gribonval et al. 2005), but had not been applied, to
our knowledge, to the estimation of MAR models. This
general requirement for sparsity may be combined in
the future with the information provided by fibre
tractography methods based on diffusion MRI.

The simulations presented and the real fMRI
example analysed comprised 100 and 116 time-series,
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respectively. Although falling short of the spatial

dimensionality of functional neuroimages, they repre-

sent an order of magnitude increase in the size of

problem than those that are solvable standard time-

series techniques. The methods and software devel-

oped have been tested to be scalable for the analysis of

hundreds of thousands of voxels.

For the sake of simplicity, the SMAR has been

posited to be linear, stationary and to involve only lags

of the first order. It is relatively straightforward to

generalize this formalism to the analysis of more

complex situations. Such extensions have already

been carried out for the small p case for non-stationary

time-series analysis (Hesse et al. 2003) and for non-

linear processes (Freiwald et al. 1999). Work is

currently in progress to apply sparse restrictions in

order to address more realistic assumptions when

modelling functional neuroimages.
Phil. Trans. R. Soc. B (2005)
While it is true that nothing can substitute for the
lack of data, the next best thing, if the data are scarce, is
not to use it in estimating things that are probably not
there.

The authors thank Mitchell Valdés-Sosa, Maria A. Bobes-
León, Nelson Trujillo Barreto and Lorna Garcı́a-Pentón for
providing the experimental data analysed in this paper, as well
as for valuable insights and support.
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measures. We show that some of the challenges faced in this field have promising solutions and speculate on
future developments.
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Introduction

Following an empirical evaluation of effective connectivity mea-
surements (David et al., 2008) and a primer on its implications (Friston,
2009a), the Comments and Controversy (C&C) exchange, initiated by
Roebroeck et al. (2011b-this issue) and continued by David (2011-this
issue), Friston (2011b-this issue), and Roebroeck et al. (2011a-this
issue), has provided a lively and constructive discussion on the relative
merits of two current techniques, Granger CausalModeling (GCM)1 and
Dynamic Causal Modeling (DCM), for detecting effective connectivity
using EEG/MEG and fMRI time series. The core papers of the C&C have
been complemented by authoritative contributions (Bressler and Seth,
2011-this issue; Daunizeau et al., 2011a-this issue; Marinazzo et al.,
2011-this issue) that clarify the state of the art for each approach.

This final paper in the series attempts to summarize themain points
discussed and elaborate a conceptual framework for the analysis of
effective connectivity (Figs. 1 and 2). Inferring effective connectivity
comprises the successive steps of model specification, model identifi-
cation andmodel (causal) inference (seeFig. 1).These steps are common
to DCM, GCM and indeed any evidence-based inference.Wewill look at
the choicesmade at each stage to clarify current areas of agreement and
disagreement, of successes and shortcomings.
This entails a selective review of key issues and lines of work.
Although an important area, we will not consider models that are just
used to measure statistical associations (i.e. functional connectivity).
In other words, we limit our focus to discovering effective connec-
tivity (Friston, 2009a); that is causal relations between neural
systems. Importantly, we hope to establish a clear terminology to
eschew purely semantic discussions, and perhaps dispel some
confusion in this regard. While preparing this material, we were
struck with how easy it is to recapitulate heated arguments in other
fields (such as econometrics), which were resolved several decades
ago. We are also mindful of the importance of referring to prior work,
to avoid repeating past mistakes2 and to identify where more work is
needed to address specific problems in the neurosciences.

We shall emphasize several times in this paper that causality is an
epistemological concept that can beparticularly difficult to capturewith
equations. This is because one's intuitive understanding of causality
becomes inherently constrainedwhenever one tries tomodel it. In brief,
one can think of causality in at least two distinct ways:

• Temporal precedence, i.e.: causes precede their consequences;
• Physical influence (control), i.e.: changing causes changes their
consequences.
m consisting in change, depends on retentiveness. When change
mains nothing to improve and no direction is set for possible
when experience is not retained, as among savages, infancy is
o cannot remember the past are condemned to repeat it.” George
f Reason, Volume 1, 1905.
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Fig. 1. Overview of causal modeling in Neuroimaging. Overall view of conceptual framework for defining and detecting effective connectivity in Neuroimaging studies.
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This distinction is important, since it is the basis for any statistical
detection of causal influence. In the context of brain connectivity,
identifying causal relationships between two regions in the brain thus
depends upon whether one tests for improvement in predictive
capacity between temporally distinct neural events or one assesses
the distal effect of (experimentally controlled) interventions.

Temporal precedence is the basis for Granger-like (what we call
WAGS influence, see WAGS influence section) inferences about
causality. In its simplest form, the idea is the following: A WAGS-
causes B if one reduces the uncertainty about the future of B given the
Fig. 2. Data and model driven approaches to causal modeling. Data driven approaches
look for nonparametric models that not only fit the data but also describe important
dynamical properties. They complement hypothesis driven approaches that are not
only constrained by having to explain dynamical behavior but also provide links to
computational models of brain function.
past of A. Statistical tests of WAGS-causality thus rely upon
information theoretic measures of predictability (of B given A).

In contradistinction, physical influence speaks to the notion of
intervention and control, which has been formalized using a
probabilistic framework called causal calculus (Pearl, 2000) (Structural
causal modeling: graphical models and Bayes–Nets section). Observing
(or estimating) activity at a network node potentially provides
information about its effects at remote nodes. However, physically
acting upon (e.g., fixing) this activity effectively removes any other
physical influence this node receives. This means that inferences based
on the effects of an intervention are somewhat different in nature from
those based on purely observational effects. Generally speaking,
inference on structural causality rests on modeling the effects of
(controlled) experimental manipulations of the system, c.f. the popular
quote ‘no causes in, no causes out’ (Cartwright, 2007). As we shall see
later, these twoapproaches canbecombined (Dynamic structural causal
modeling section).

The structure of the paper is as follows.We first review the types of
models used for studying effective connectivity. We then touch briefly
on the methods used to invert and make inferences about these
models. We then provide a brief summary of modern statistical causal
modeling, list some current approaches in the literature and discuss
their relevance to brain imaging. Finally, we list outstanding issues
that could be addressed and state our conclusions.

Model specification

State-space models of effective connectivity

From the C&C discussion, there seems to be a consensus that
discovering effective connectivity in Neuroimaging is essentially a
comparison of generative models based on state-space models (SSM)
of controllable (i.e., “causal” in a control theory sense) biophysical
processes that have hidden neural states and possibly exogenous

image of Fig.�2


3 We use the following conventions for intervals, [a,b) indicates that the left
endpoint is included but not the right one and that b precedes a.

341P.A. Valdes-Sosa et al. / NeuroImage 58 (2011) 339–361
input. While having a long history in engineering (Candy, 2006;
Kailath, 1980), SSM was only introduced recently for inference on
hidden neural states (Valdes-Sosa et al., 1999; Valdes-Sosa et al.,
1996; Valdés-Sosa et al., 2009a). For a comprehensive review of SSM
and its application in Neuroscience see the forthcoming book (Ozaki,
2011).

Neural states describe the activity of a set of “nodes” that comprise
a graph, the purpose of causal discovery being the identification of
active links (edges or connections) in the graph. The nodes can be
associatedwith neural populations at different levels;most commonly
at the macroscopic (whole brain areas) or mesoscopic (sub-areas to
cortical columns) level. These state-space models have unknown
parameters (e.g., effective connectivity) and hyperparameters (e.g.,
the amplitude of random fluctuations). The specific model, states,
parameters, hyperparameters and observables chosen determines the
type of analysis and the nature of the final inference about causality.
These choices are summarized in Fig. 1 (Step 1).

Given a set of observations or brainmeasurements, the first problem
is: which data features are relevant for detecting causal influences? The
most efficient way to address this question is to specify a generative
model, i.e. a set of equations that quantify how observed data are
affectedby thepresence of causal links. Put simply, thismodel translates
the assumption of (i) temporal precedence or (ii) physical influence into
how data should appear, given that (i) or (ii) is true. By presenting the
data togenerativemodels,model comparisoncan thenbeused todecide
whether some causal link is likely to be present (by comparing models
with and without that link). We now turn to the specification of
generative models, in the form of a SSM.

Nodes and random variables

The first things we consider are the basic units or nodes, among
which one wants to find causal links. These are usually modeled as
macroscopic, coarse grained, ensembles of neurons, whose activity is
summarized by a time varying state vector xr(t) or x(r, t): r∈R. For
example x(t) could be instantaneous (ensemble average) post-
synaptic membrane depolarization or pre-synaptic firing rate of
neurons. The set R of nodes is usually taken as a small number of
neural masses corresponding to pre-selected regions of interest (ROI)
as is typical in both DCM and GCM. However, there has been recent
interest in making R a continuous manifold (i.e. the cortex) that is
approximated by a very high dimensional representation at the
voxel level. We denote the complete set of random variables asso-
ciated with each node as X={X\ i, Xi} whose joint distribution is
described using a generative model. X\ i is the set of nodes without
node i and p(x)≜p(X=x).

The observation equation

Any model always includes an explicit or implicit observation
equation that generally varies with the imaging modality. This
equation specifies how hidden (neuronal) states xr(t) produce
observable data yq(tk): q∈Q. This is the sensor data sampled at
discrete time points tk=kΔ:

yq tkð Þ = g xr ; tð Þ + e tkð Þ : r∈ Rr ; t∈ tk; tk−1½ � ð1Þ

for k=1 … K. It is important to note that observations at a given
sensor q only reflect neural states from a subset of brain sites,
modified by the function g over a time interval determined by the
sampling period Δt and corrupted by instrumental noise e(tk). When
the sampling period is not considered explicitly, the observations are
denoted by yq(k). In most cases, this mapping does not need to be
dynamic since there is no physical feedback from observed data to
brain processes. In this special case, the observation equation reduces
to an instantaneous transformation: Y tð Þ = g̃ X tð Þð Þ, where g̃ is
derived from g and any retarded (past) hidden states have been
absorbed in X(t) (e.g., to model hemodynamic convolutions).

A selected collection of observation equations used in Neuro-
imaging is provided in Table 1. The observation equation is sometimes
simplified by assuming that observed data is a direct measurement of
neural states (with negligible error). While this might be an
acceptable assumption for invasive electrophysiological recordings,
it is inappropriate in many other situations: for example, much of the
activity in the brain is reflected in the EEG/MEG via the lead field with
a resultant spatial smearing. For the BOLD signal, the C&C articles have
discussed exhaustively the need to account for temporal smearing
produced by the hemodynamic response function (HRF) when
analyzing BOLD responses. This is important for fMRI because the
sampling period is quite large with respect to the time course of
neural events (we shall elaborate on this below).

Instrumental or sensor noise can seriously affect the results of
causal analyses. One simple approach to causal modeling is to take the
observation equation out of the picture by inverting the observation
equation (i.e., mapping from data to hidden states). The estimated
states can then used for determining effective connectivity. This
approach has been taken both for the EEG (Supp et al., 2007) and fMRI
(David et al., 2008). However, this is suboptimal because it assumes
that the causal modeling of hidden states is conditionally independent
of the mapping from data. This is generally not the case (e.g., non-
identifiability between observation and evolution processes described
below). The optimal statistical procedure is to invert the complete
generative model, including the observation and state equations
modeling the evolution of hidden states. This properly accommodates
conditional dependencies between parameters of the observer and
state equations. A nice example of this is DCM for EEG and MEG, in
which a SSM of coupled neuronal sources and a conventional
electromagnetic forward model are inverted together. This means
the parameters describing the spatial deployment of sources (e.g.,
dipole orientation and location) are optimized in relation to
parameters controlling the effective connectivity among hidden
sources. This sort of combined estimation has been described for
simple noise models (Table 1-#2 by Nalatore et al. (2007)). For fMRI,
DCM models the hemodynamic response with hidden physiological
states like blood flow and volume and then uses a nonlinear observer
function to generate BOLD responses (Table 2-#4). Early applications
of GCM did not model the HRF but in recent years a number of papers
have included explicit observation models in GCM (Ge et al., 2009;
Havlicek et al., 2010), which have even incorporated the full nonlinear
HRF model used in DCM (Havlicek et al., 2009; Havlicek et al., 2011).

The state equation

The evolution of the neuronal states is specified by the dynamical
equations:

xr tð Þ = f xr′∈Rr′
τð Þ;u τð Þ; ξr′∈Rr′

τð Þ
� �

: τ∈ t; t−t0ð �: ð2Þ

This equation3 expresses, xr(t), the state vector of node r at time t
as a function of:

• the states of nodes xr '(τ): r′∈Rr 'pR
• exogenous inputs, u(τ) and a
• stochastic process ξr′(τ).

Note that the dependence of the current states at node r may
be contingent on values of other variables from an arbitrary past from
t− t0 to just before t. The time dependence of Eq. (2) is important
because it allows to model feedback processes within the network.



Table 1
Observation equations. Examples of observation equations used for causal modeling of effective connectivity in the recent literature. Abbreviations: discrete (D), continuous (C),
white noise (WN). Note for Models #5 and #6 the observation equation is considered as all the equations except for the (neural) state equations. Strictly speaking, the observer
function is just the first equality (because the subsequent equations of motion are part of the state equation); however, we have presented the equations like this so that one can
compare instantaneous observation equations that are a function of hidden states, convolution operators or a set of differential equations that take hidden neuronal states as their
inputs.

Model Observation equation Measurement Space Time Equation type Kind of stochastic
process

1 None (Bressler and Seth, 2010) y(r, k)=x(r, k) EEG/fMRI D D Identity none
2 Added noise

(Nalatore et al., 2007)
y(r, k)=x(r, k)+e(r, t) fMRI D D Linear regression WN

3 Spatial smearing
(Riera et al., 2006)

y(q, t)=∫
r∈R

k(r, r′)x(r′, t)dr′+e(r, t) EEG/MEG D C Volterra integral
equation with noise

none

4 Convolution with linear HRF (Glover,
1999)

y r; kð Þ = ∫t = kΔ

−∞
h τð Þx r; t−τð Þdτ + e r; kð Þ fMRI D C Temporal

convolution
WN

5 Nonlinear HRF function
(Friston et al., 2000)

yt = V0 a1 1−qtð Þ−a2 1−vtð Þð Þ

v̇t =
1
τ0

ft−v1 = α
t

� �

q̇t =
1
τ0

ft 1− 1−E0ð Þ1= ft
� �

E0
− qt

v1−1 = α
t

0@ 1A
ṡt = εut− 1

τs
st− 1

τf
ft−1ð Þ

ḟt = st

fMRI C C Nonlinear
differential
equation

none

6 Nonlinear HRF function
(Valdes-Sosa et al., 2009a) f ġe tð Þ = se tð Þ

ṡe tð Þ = ae
τe

ue t−δeð Þ−1ð Þ− 2
τe

se tð Þ− 1
τ2e

ge tð Þ−1ð Þ

f ġi tð Þ = si tð Þ

ṡi tð Þ = ai
τi

ui t−δið Þ−1ð Þ− 2
τi
si tð Þ− 1

τ2i
gi tð Þ−1ð Þ

x =
1

1 + e−c ge tð Þ−dð Þ

f ˙˙f tð Þ = sf tð Þ

ṡf tð Þ = ε ue t−δf
� �

−1
� �

− sf tð Þ
τs

− f tð Þ−1
τf

mi tð Þ = gi tð Þ; me tð Þ = 2−x
2−x0

ge tð Þ; m tð Þ = γme tð Þ + mi tð Þ
γ + 1

fv̇ tð Þ = 1
τ0

f tð Þ−fout v; tð Þð Þ

q̇ tð Þ = 1
τ0

m tð Þ−fout v; tð Þ q tð Þ
v tð Þ

� �
; fout v; tð Þ = v

1
α

y tð Þ = V0 a1 1−qð Þ−a2 1−vð Þð Þ

EEG/fMRI C C Nonlinear random
differential
algebraic equation

none
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Many specific forms have been proposed for Eq. (2); some examples
are listed in Table 2, which is just a selection to illustrate different points
discussed below. Some types of equations, to our knowledge, have not
been yet used for the analysis of effective connectivity. Several general
observations emerge from these examples:

Discrete versus continuous time modeling: The state equations for
GCM have been for the most part discrete time recurrence models
(Bressler and Seth, 2010). Those for DCM are based on continuous
time models (differential equations) (Friston, 2009a). The latter
have advantages in dealing with the problem of temporal
aggregation and sub-sampling as we shall see below. In fact,
DCM is distinguished from general SSM by the fact it is based on
differential equations of one sort or another.
Discrete versus continuous spatial modeling: GCM has been
applied to continuous space (neural fields) though limited to
discrete time (Galka et al., 2004; Valdes-Sosa, 2004). DCM has
mainly been developed for discrete-space (ROIs) and, as
mentioned above, continuous time. State space models that are
continuous in space and time have recently been looked at in the
context of neural field equations (Daunizeau et al., 2009c;
Galka et al., 2008).
Type of equation: GCM has been predominantly based on linear
stochastic recurrence (autoregressive) models (Bressler and Seth,
2010). DCM on the other hand has popularized the use of
deterministic ordinary differential equations (ODE). These range
from simple bilinear forms for fMRI that accommodate interactions
between the input and the state variables (Friston, 2009a) to
complicated nonlinear equations describing the ensemble dynamics
of neural mass models. In their most comprehensive form, these
models can be formulated as Hierarchical Dynamical Models (HDM)
(Friston, 2008a,b). HDM uses nonlinear random differential equa-
tions and static nonlinearities, which can be deployed hierarchically
to reproduce most known parametric models. However, as noted in
the C&C, GCM is not limited to linear models. GCM mapping
(Roebroeck et al., 2005) uses an (implicit) bilinear model, because
the Autoregressive coefficients depend on the stimulus; this
bilinearity is explicit in GCM on manifolds (Valdés-Sosa et al.,
2005) GCM has also been extended to cover nonlinear state-
equations (Freiwald et al., 1999; Marinazzo et al., 2011).
The type of models used as state equations are very varied (and are
sometimes equivalent). One can find (for discrete spatial nodes)
recurrence equations, ordinary differential equations, and (for
neural fields) differential-integral and partial differential equations.



Table 2
State equations. Examples of the state equations used in the recent literature for causal modeling of effective connectivity. Abbreviations: C (continuous), D (discrete), WN (white
noise).

Model State equation Space Time Equation type Stochastic process

Linear GCM (Bressler and
Seth, 2010) x r; kð Þ = ∑

Nr

r0 =1
∑
T

l=1
al r; r′ð Þx r′; k−lð Þ + ξ r; kð Þ

D D Linear multivariate linear
autoregressive (VAR)

WN

2 Nonlinear GCM (Freiwald
et al., 1999)

x r; kð Þ = ∑
Nr

r0 =1
∑
T

l=1
a l; r; r′; x r′; k−lð Þ½ � x r′; k−lð Þ + ξ r; kð Þ D D Nonlinear nonparametric

VAR (NNp_MVAR)
WN

3 Linear bivariate GCM mapping
(Roebroeck et al., 2005)

x r; kð Þ
x ROI; kð Þ

" #
= ∑

Nl

l=1

al r; rð Þ al r;ROIð Þ
al ROI; rð Þ al ROI;ROIð Þ

" #
x r; k−lð Þ

x ROI; k−lð Þ

" #
+

ξ r; kð Þ
ξ ROI; kð Þ

" #

∀r∈R x ROI; kð Þ = ∫
r∈R

x r; kð Þdr

D D VAR since al(r, r')
Implicitly bi-linear
changes with state.
(GCMap)

WN

4 Linear GCM on spatial
manifold (Valdés et al., 2006)

x r; kð Þ = ∑
Nl

l=1
∫r0∈Ral r; r′ð Þx r′; k−lð Þdr′ + ξ r; kð Þ C D Implicitly bi-linear VAR

as in 3
WN

5 Nonlinear DCM
(Stephan et al., 2008)

ẋ r; tð Þ = ∑
Nx

r0 =1
a r; r′ð Þx r′; tð Þ

+ ∑
Nu

i=1
u i; tð Þ ∑

Nx

r0 =1
b r; r′ð Þx r′; tð Þ

+ ∑
Nx

r0 =1
∑
Nx

r00 =1
d r; r′; r″
� �

x r′; tð Þx r″; t
� �

+ ∑
Nu

i=1
c r; ið Þu i; tð Þ

D D Differential equation
bilinear in both states
and inputs (DE)

None

6 Neural mass model
(Valdes et al., 1999)

ẋ r; tð Þ = f x r; tð Þð Þ + ξ r; tð Þ C C Ito stochastic differential
(SDE)

WN as formal
derivative of
Brownian motion

7 Hierarchical dynamic causal
model (Friston, 2008a,b)

ẋ r; tð Þ = f x r; tð Þ;u tð Þð Þ + ξ r; tð Þ D C General nonlinear (HDM) Analytic,
non-Markovian

8 Neural field (Jirsa et al., 2002) ∂2
∂t2 + 2ω ∂

∂t + ω2
0−v2∇2

� �3=2
x r; tð Þ = ω3

0 + ω2
0

∂
∂t

� �
S x r; tð Þ + ξ r; tð Þ½ � C C Stochastic fractional

partial differential (SfPDE)
WN

9 Modified neural field
(P. A. Valdes-Sosa et al., 2009a)

̈x r; tð Þ = f ẋ r; tð Þ; x r; tð Þð Þ + S z r; tð Þð Þ + ξ r; tð Þ

z r; tð Þ = ∫
R
a r; r0ð Þx r; τ r; r0ð Þð Þdr0

τ r; r0ð Þ = t− r−r0j j
ν

C C Random differential–
algebraic-equation (RDE)

General
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Tounderscore the variety of forms for effective connectivity,wenote
entry #8 in Table 2 which boasts a fractional differential operator!
Fractional operators arise in the context of neuralfields inmore than
one dimension; they result from the Fourier transform of a synaptic
connection density that is a continuous function of physical distance.
However, the ensuing fractional differential operators are usually
replaced by ordinary (partial) differential operators, when numeri-
cally solving the neural wave propagation equation given in Table 2;
see Bojak and Liley (2010) and Coombes et al. (2007) for the so-
called ‘long wavelength approximation’.
Among other things, it can be important to include time delays in
the state equation; this is usually avoided when possible to keep
the numerics simple (delay differential equations are infinite
dimensional) and are generally considered unnecessary for fMRI.
However, delays are crucial when modeling electromagnetic data,
since they can have a profound effect on systems dynamics
(Brandt et al., 2007). For example, delayed excitatory connections
can have an inhibitory instantaneous effect. In fact starting with
Jansen and Rit (1995) it has been common practice to include time
delays. This can be implemented within the framework of ODEs;
David et al. (2006) describe an ODE approximation to delayed
differential equations in the context of DCM for EEG and MEG.
An example of the potential richness of model structures is found
in Valdes-Sosa et al. (2009a) in a neural field forward model for
EEG/fMRI fusion, which includes anatomical connections and
delays as algebraic constraints. This approach (of including
algebraic constraints) affords the possibility of building complex
models from nonlinear components, using simple interconnection
rules—something that has been developed for control theory
(Shampine and Gahinet, 2006). Note that algebraic constraints
may be added to any of the aforementioned forms of state
equation.
Type of stochastics: for GCM-type modeling with discrete-time
models, Gaussian White Noise (GWN) is usually assumed for the
random fluctuations (state noise) or driving forces (innovations)
for the SSM and poses no special difficulties. However in
continuous time the problem becomes more intricate. A popular
approach is to treat the innovation as nowhere differentiable but
continuous Gaussian White Noise (the “derivative” of Brownian
motion (i.e., a Wiener process). When added to ordinary
differential equations we obtain “stochastic differential equations”
(SDE) as described inMedvegyev (2007) and used for connectivity
analysis of neural masses in Riera et al., (2007a,b), Riera et al.
(2006). Wiener noise is also central to the theory of Stochastic
Partial Differential Equations (SPDE) (Holden et al., 1996), which
may play a similar role in neural field theory as SDEs have played
for neural masses (Shardlow, 2003).
Despite the historical predominance of the classical SDE formula-
tion in econometrics (and SSM generally), we wish to emphasize
the following developments, which may take us (in the biological
sciences) in a different direction:
1. The first is the development of a theory for “random differential

equations” (RDE) (Jentzen and Kloeden, 2009). Here random-
ness is not limited to additive Gaussian white noise because the
parameters of the state equations are treated as stochastic. RDE
are treated as deterministic ODE, in the spirit of Sussmann
(1977), an approach usable to great advantage in extensive
neural mass modeling (Valdes-Sosa et al., 2009a) that is
implicitly a neural field.

2. The second development, also motivated by dissatisfaction
with classical SDE was introduced in Friston and Daunizeau
(2008). In that paper, it was argued that DCMs should be based
on stochastic processes, whose sample paths are infinitely
differentiable—in other words, analytic and non-Markovian.
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Though overlooked in the heyday of SDE theory, this type of
process was described very on early by Belyaev (1959).4 In fact
any band-limited stochastic process is an example of an
analytic random process; a stochastic process with a spectrum
that decreases sharply with frequency, has longmemory, and is
non-Markovian (Łuczka, 2005). The connection between
analytic stochastic processes and RDE can be found in Calbo
et al. (2010). An interesting point here is that for the process to
be analytic its successive derivatives must have finite variances,
as explained in Friston and Daunizeau (2008). This leads to the
generalization of classical SSM into generalized coordinates of
motion that model high-order temporal derivatives explicitly.
As pointed out in Friston (2008a,b), it is possible to cast an RDE
as a SDE by truncating the temporal derivatives at some
suitably high order (see also Carbonell et al., 2007). However,
this is not necessary because the theory and numerics for RDEs
in generalized coordinates are simpler than for the equivalent
SDE (and avoid the unwieldy calculus of Markovian formula-
tions, due to Ito and Stratonovich).

3. The third development is the recognition that non-Markovian
processes may be essential for neurobiological modeling. This
has been studied for some time in physics (Łuczka, 2005) but
has only recently been pointed out by Friston (2008a,b) in a
neuroscience setting. In fact, Faugeras et al. (2009) provide a
constructive mean-field analysis of multi-population neural
networks with random synaptic weights and stochastic inputs
that exhibits, as a main characteristic, the emergence of non-
Markovian stochastics.

4. Finally the fourth development is the emergence of neural field
models (Coombes, 2010; Deco et al., 2008), which not only
poses much larger scale problems but also the use of integral
equations, differential–integral equations, and partial differen-
tial equations which have yet to be exploited by DCM or GCM.

Biophysical versus non-parametric motivation: As discussed above,
there is an ever increasing use of biophysically motivated neural
mass and field state equations and, in principle, these are preferred
when possible because they bring biophysical constraints to bear
on model inversion and inference. When carrying out exploratory
analyses with very large SSM, it may be acceptable to use simple
linear or bilinear models as long as basic aspects of modeling are
not omitted.
Further generalizations: We want to end this subsection by
mentioning that there is a wealth of theory and numerics for
other stochastic (point) processes (Aalen and Frigessi, 2007;
Commenges and Gégout-Petit, 2009) that have not yet been, to our
knowledge, treated formally in Neuroimaging. Spike trains,
interictal-spikes, and random short-timed external stimuli may
be treated as point processes and can be analyzed in a unified
framework with the more familiar continuous time series. This
theory even encompasses mixtures of slow wave and spike trains.
Causal modeling depends very specifically on the temporal and
spatial scales chosen and the implicit level of granularity chosen to
characterize functional brain architectures. For example, if we
were to study the interaction of two neural masses and model the
propagation of activity between them in detail, we would have to
make use of the PDE that describes the propagation of nerve
impulses. If we eschew this level of detail, we may just model the
fact that afferent activity arrives at a neural mass with a
conduction delay and use delay differential equations. In short,
the specification of the appropriate SSM depends on the spatial
and temporal scale that one is analyzing. For example,
in concurrent EEG/fMRI analysis of resting state oscillations
4 With suggestion by A.N. Kolmogorov.
(Martínez-Montes et al., 2004) the temporal scale of interesting
phenomena (fluctuations of the EEG spectrum) is such that one
may convolve the EEG signal and do away with the observation
equation! This is exactly the opposite of the deconvolution
approach mentioned above. The purpose of Tables 1 and 2 is to
highlight the variety of forms that both state and observation
equations can take; for example, in Table 2-#6 key differential
equations are transformed into differential algebraic equations to
great computational advantage (Valdes-Sosa et al., 2009a).

Specification of priors

It is safe to say that the Neuroimaging (and perhaps generally)
modeling can be cast as Bayesian inference. This is just a euphemism
for saying that inference rests on probability theory. The two key
aspects of Bayesian inference we will appeal to in this article are
(i) the importance of prior believes that form an explicit part of the
generativemodel; and (ii) the central role of Bayesianmodel evidence
in optimizing (comparing and selecting) models to test hypotheses. In
terms of priors, it was very clear in an early state space model for EEG
connectivity (Valdes-Sosa et al., 1996) that without prior assumptions
about the spatial and temporal properties of the EEG, it was not
possible to even attempt source reconstruction. Indeed the whole
literature on ill-posed inverse problems rests on regularization that
can be cast in terms of prior beliefs.

In the SSM formulation, priors may be placed upon parameters in
the observation and state equations, and the states themselves (e.g.,
through priors on the higher-order motion of states or state-noise).
Sometimes, it may be necessary to place priors on the priors
(hyperpriors) to control model complexity. There has been an
increasing use of priors in fMRI research, as clearly formulated in
the DCM and HDM framework (Friston, 2008a,b). In connectivity
analyses, in addition to the usual use of priors to constrain the range of
parameters quantitatively; formal or structural priors are crucial for
switching off subsets of connections to form different (alternative)
models of observed data. Effectively, this specifies the model in terms
of its adjacency matrix, which defines allowable connections or
conditional dependencies among nodes. Conditional independence
(absence of an edge or anti-edge) is easy to specify by using a prior
expectation of zero and with zero variance. This is an explicit part of
model specification in DCM and is implicit in Granger tests of
autoregressive models, with and without a particular autoregression
coefficient.

Crucially, formal priors are not restricted to the parameters of a
model; they can also be applied to the form of the prior density over
parameters. These can be regarded as formal hyperpriors. An
important example here is the prior belief that connections are
distributed sparsely (with lots of small or absent connections and a
small number of strong connections). This sort of hyperprior can be
implemented by assuming the prior over parameters is sparse. A nice
example of this can be found in Valdés-Sosa (2004), Valdés-Sosa et al.
(2005, 2006), and Sánchez-Bornot et al. (2008).

The essential features of their model are shown in Fig. 3. The
authors analyzed slow fluctuations in resting state EEG. In this
situation, convolving these electrophysiological fluctuations with a
HRF affords (convolved) EEG and BOLD signals on the same time scale,
permitting lag-based inference. An example is presented in Fig. 4,
which shows the results of GCM Mapping for 579 ROIs from an EEG
inverse solution and concurrent BOLD signals. The EEG sources were
obtained via a time resolved VARETA inverse solution (Bosch-Bayard
et al., 2001) at the peak of the alpha rhythm. The graphs present the
result of inverting a (first order) multivariate vector autoregression
model, where a sparse l1 norm penalty was imposed on the
parameters (coefficient matrix). The implications of these results
will be further discussed in Conclusion and suggestions for further
work section below.



Fig. 3. Bayesian inference on the connectivity matrix as a random field. a) Causal modeling in Neuroimaging has concentrated on inference on neural states x(r, t)∈R defined on a
subset of nodes in the brain. However, spatial priors can be used to extend models into the spatial domain (cf., minimum norm priors over current source densities in EEG/MEG
inverse problems). b) In connectivity analysis, attention shifts to the AR (connectivity) matrix (or function) a(r, r′), where the ordered pairs (r, r′) belong to the Cartesian product
R×R. For this type of inference, priors are now placed on the connectivity matrix. c) Sparse multivariate autoregression obtains by penalizing the columns of a full multivariate
autoregressive model (Valdés-Sosa et al., 2005) thus forcing the columns of the connectivity matrix to be sparse. The columns of the connectivity matrix are the “outfields” that map
each voxel to the rest of the brain. This is an example of using sparse (spatial) hyperpriors to regularize a very difficult inverse problem in causal modeling.
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Model comparison and Identifiability

As we have seen, the SSMs considered for EEG and fMRI analysis are
becoming increasingly complex, with greater spatial or temporal
coverage and improved biological realism. A fundamental question
arises: Are these models identifiable? That is to say, are all states and
parameters uniquely determined by a given set of data? This is a basic
issue for all inverse problems, and indeedwe are facedwith a dynamical
inverse problem of the greatest importance. For example, recent
discussions about whether lag information can be derived from the
fMRI signal (in spite of heavy smoothing by the HRF and the subsequent
sub sampling) can be understood in terms of the identifiability of delays
in the corresponding SSM. It is striking that, in spite of much classical
work on the Identifiability of SSMs (see for example Ljung and Glad,
1994), a systematic treatment of identification has not been performed
for Neuroimaging models (but see below). An example of the type of
problem encountered is the complaint that a model with many neural
masses and different configurations or parameter values can produce
traces that “look the same as an observed response”.

Identifiability has been addressed in bioinformatics, where much
theory for nonlinear SSM has been developed (Anguelova and
Wennberg, 2010; August and Papachristodoulou, 2009). Of particular
note is DAISY, a computer algebra system for checking nonlinear SSM
Identifiability (Saccomani et al., 2010). Another framework for
modeling and fitting systems defined by differential equations in
bioinformatics is “Potters Wheel” (Maiwald and Timmer, 2008), which
uses a profile likelihood approach (Raue et al., 2009) to explore
“practical Identifiability” in addition to structural (theoretical) Identifia-
bility. So why has Neuroimaging not developed similar schemes?

In fact, it has. In a Bayesian setting the issue of model (and
parameter) identifiability is resolved though Bayesian model com-
parison. If two models generate exactly the same data with the same
number of parameters (complexity), then their evidence will be
identical. This means there is no evidence for one model over the
other and they cannot be distinguished. We will refer a lot to model
evidence in what follows: model evidence is simply the probability of
the data given the model. It is the marginal likelihood that obtains
from marginalizing the likelihood over unknown model parameters.
This is useful to remember because it means the likelihood of a model
(the probability of data given a model and its parameters) is a special
case of model evidence that results whenwe ignore uncertainty about
the parameters. In the same way, classical likelihood ratio tests of two
models are special cases of Bayes Factors used in Bayesian model
comparison. In this context, identifiability is a particular aspect of
model comparison. Identifiability mandates that changing a compo-
nent of a model changes the model evidence. This is the basic idea
behind the profile likelihood approach (Raue et al., 2009), which is
based on the profile of the evidence for models with different
parameter values. There are other examples that can be regarded as
special cases of model comparison; for example, the Kullback–Leibler
information criterion proposed for model identification (Chen et al.,
2009). The evidence can be decomposed into an accuracy and
complexity term (see Penny et al., 2004). Interestingly, the complex-
ity term is the Kullback–Leibler divergence between the posterior and
prior densities over parameters. This means that in the absence of
informative priors, model evidence reduces to accuracy; and
identifiability reduces to a (nontrivial) change in the accuracy or fit
when changing a model or parameter.

The Bayes–Net literature (see below) has dealt with the problem
of Identifiability for graphical causal models at its inception (Spirtes
et al., 2000). It can be shown that a given data set can be compatible
not with a single causal model but with an equivalence class of models

image of Fig.�3


Fig. 4. Sparse multivariate autoregression of concurrent EEG/fMRI recordings. Intra and
inter modality connectivity matrix for a concurrent EEG/fMRI recordings. The data
analyzed here were the time courses of the average activity in 579 ROI: for BOLD (first
half of data vector) and EEG power at the alpha peak. A first-order sparse multivariate
autoregressive model was fitted with an l1 norm (hyper) prior on the coefficient matrix.
The t-statistics of the autoregression coefficients where used for display. The color bar is
scaled to the largest absolute value of the matrix, where green codes for zero. a) the
innovation covariance matrix reflecting the absence of contemporaneous influences:
b) t-statistics for the lag 1 AR coefficients.
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(that all have the same evidence). The implications of this for
Neuroimaging have been considered in Ramsey et al. (2010). From
this discussion, it becomes clear that the ability to measure model
evidence (or some proxy) is absolutely essential to make sensible
Table 3
Classification of observation and state equations used in Neuroimaging state-space mod
Biophysically informedmodels are hypothesis driven andmay afford more efficient inference
be identifiable without additional priors but that may yield biased estimators. Nonparam
estimable but are generally unbiased.

Observation model State mo

Parametric Non-parametric Parametr

Generic Linear canonical HRF
(Glover, 1999)

Linear spline HRF
(Marrelec et al., 2003)

GCM (Br
2010a) b

Biophysically
informed

DCM nonlinear HRF
(Friston et al., 2000)

– Neural m
(Moran e
inferences about models or architectures generating observed data.
This is at the heart of evidence-based inference and DCM.

Summary

State space models for Neuroimaging come in an ever increasing
variety of forms (Tables 1 and 2). It is useful to classify the types of
models used in terms of their observation and state equations, as in
Table 3. Here, we see a distinction between models that are fairly
generic (in that they are not based on biophysical assumptions) and
those that correspond to biologically informed models. The canonical
HRF model is an example of generic HRF. Conventional GCM is based
on a generic model for neural states: the VAR model and has been
extended to switching VAR and bilinear models, the latter used in
some forms of DCM. Being generic is, at the same time, a strength and
weakness; biophysical models allowmuchmore precise and informed
inference—but only if the model is right or can be optimized in terms
of its evidence. We have also seen the key role that model evidence
plays in both making causal inferences by comparing models and
(implicitly) establishing their identifiability. The evidence for a model
depends on both accuracy and complexity and the complexity of the
model depends on its priors.

Another distinction between models is their complexity (e.g.,
number of parameters they call on). It is clear that without prior
beliefs, one cannot estimate more parameters than the degrees of
freedom in the data available. However, modern statistical learning
has gone beyond low dimensional parametric models to embrace
non-parametric models with very high dimensional parameter
spaces. The effective number of degrees of freedom is controlled by
the use of priors. DCM has been concerned mainly with hypothesis
driven parametric models, as has conventional GCM. However,
nonparametric models, such as smoothness priors in the time domain
have been used to estimate the HRF (Marrelec et al., 2003). Another
example is the use of spatial priors to estimate the connectivity matrix
in GCMap (Valdes-Sosa, 2004). Finally, when choosing a State Space
model, it is useful to appreciate that there are two agendas when
trying to understanding the connectivity of complex systems:

1. A data driven exploratory (discovery) approach that tries to scan
the largest model space possible, identifying robust phenomena or
candidates that will serve as constraints for more detailed
modeling. This type of approach generally uses nonparametric or
simply parameterized models for knowledge discovery. Prior
knowledge is generally nonspecific (e.g., connections are sparse)
but relatively non-restrictive.

2. A model driven confirmatory approach that is based on specific
hypothesis drivenmodels that incorporate asmuch biophysical prior
knowledge as possible. Generally, the priors entail specific hypoth-
esis about connectivity that can be resolvedusingmodel comparison.

These two approaches are shown in Fig. 2 (modified from Valdés-
Sosa et al., 1999). In both cases, modeling is constrained by the data,
by biophysical plausibility and ultimately the ability to establish links
with computational models (hypotheses) of information processing
els. Generic models lack specific biophysical constraints but are widely applicable.
(if correct). The term parametric refers to models with a small enough parameter set to
etric models are richly parameterized and therefore require prior distributions to be

del

ic Non-parametric

essler and Seth, 2010) Switching VAR (Smith et al.,
ilinear discrete DCM (Penny et al., 2005)

GCMap (Roebroeck et al.,
2005)

ass models (Valdes et al., 1999) Biophysical DCM
t al., 2008)

Neural fields (Daunizeau
et al., 2009c)
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in the brain. Table 3 shows that at one extreme the model-driven
approach is epitomized by Generic Nonparametric Models. Here,
modeling efforts are constrained by data and the attempt to disclose
emergent behavior, attractors and bifurcations (Breakspear et al.,
2006) that can be checked against biophysically motivatedmodels. An
example of this approach is searching the complete brain times brain
connectivity space (Fig. 3) with GCM mapping (Valdes-Sosa, 2004;
Roebroeck et al., 2005). At the other end we have the parametric and
biophysically informed approach that DCM has emphasized (Chen
et al., 2008). Having said this, as evidenced by this paper and
companion papers, there is convergence of the two approaches, with a
gradual blurring of the boundaries between DCM and GCM.

Model inversions and inference

In this section, we look at the problem of model identification or
inversion; namely, estimating the states and parameters of a
particular model. It can be confusing when there is discussion of a
new model that claims to be different from previous models, when it
is actually the samemodel but with a different inversion or estimation
scheme. We will try to clarify the distinction between models and
highlight their points of contact when possible. Our main focus here
will be on different formulations of SSM and how these formulations
affect model inversion.

Discrete or continuous time?

One (almost) always works with discretely sampled data. When
the model is itself discrete, then the only issue is matching the
sampling times of the model predictions and the data predicted.
However, when starting from a continuous time model, one has to
model explicitly the mapping to discrete time.

Mapping continuous time predictions to discrete samples is a well-
known topic in engineering and (probably from the early 50s) has
been solved by linearization of the ODEs and integration over discrete
time steps; a method known as the Exponential Euler method for
reasons we shall see below: see Minchev and Wright (2005) for a
historical review. For a recent review, with pointers to engineering
toolboxes, see Garnier and Wang (2008).

One of the most exciting developments in the 60s, in econometrics
was the development of explicit methods for estimating continuous
models from sampled data, initiated by Bergstrom (1966).5 His idea
was essentially the following. Consider 3 time series X1(t), X2(t), and
X3(t) where we know the values at time t:

dX1 tð Þ
dX2 tð Þ
dX3 tð Þ

0@ 1A = A
X1 tð Þ
X2 tð Þ
X3 tð Þ

24 35dt + ∑1=2dB tð Þ: ð3Þ

Then the explicit integration6 over the interval t + Δt; t½ � is

X1 t + Δtð Þ
X2 t + Δtð Þ
X3 t + Δtð Þ

0B@
1CA = exp AΔtð Þ

X1 tð Þ
X2 tð Þ
X3 tð Þ

0B@
1CA + e t + Δtð Þ

e t + Δtð Þ = ∫Δt

0
exp sAð Þ∑1=2dB t−sð Þ

Σdiscrete = ∫Δt

0
exp sAð Þ∑exp sAT

� �
ds

e t + Δtð Þ eN 0;Σdiscreteð Þ:

ð4Þ
5 Who, in fact, did this not for SDE (ODE driven by Brownian noise) but for linear
ODE driven by random measures, as reviewed in Bergstrom (1984).

6 Note, once again, that we use the convention t + Δt; t½ � for the time interval that
goes from t in the past to t + Δt in the present; while not the conventional usage this
will make later notation clearer.
The noise of the discrete process now has the covariance matrix
Σdiscrete. It is immediately evident from the equation above that the lag
zero covariance matrix Σdiscrete will show contemporaneous covari-
ance even if the continuous covariance matrix Σ is diagonal. In other
words, the discrete noise becomes correlated over the three time-
series (e.g., channels). This is because the random fluctuations ‘persist’
through their influence on the motion of the states. Rather than
considering this a disadvantage Bergstrom (1984) and Phillips (1974)
initiated a line of work studying the estimation of continuous time
Autoregressive models (Mccrorie and Chambers, 2006), and contin-
uous time Autoregressive Moving Average Models (Chambers and
Thornton, 2009). This approach tries to use both lag information (the
AR part) and zero-lag covariance information to identify the
underlying linear model.

The extension of the above methods to nonlinear stochastic
systems was proposed by Ozaki (1992) and has been extensively
developed in recent years, as reviewed in Valdes-Sosa et al. (2009a).
Consider a nonlinear system of the form:

dX tð Þ = f X tð Þð Þdt + ∑1=2dB tð Þ

X tð Þ =
X1 tð Þ
X2 tð Þ
X3 tð Þ

24 35: ð5Þ

The essential assumption in local linearization (LL) of this
nonlinear system is to consider the Jacobian matrix A=∂ f/∂X as
constant over the time period, t + Δt; t½ �. This Jacobian plays the same
role as the matrix of autoregression coefficient in the linear systems
above. Integration over this interval follows as above, with the
solution:

X t + Δtð Þ = X tð Þ + A−1 exp AΔtð Þ−Ið Þf X tð Þð Þ + e t + Δtð Þ ð6Þ7

where I is the identity matrix. This is solution is locally linear but
crucially it changes with the state at the beginning of each integration
interval; this is how is accommodates nonlinearity (i.e., a state-
dependent autoregression matrix). As above, the discretised noise
shows instantaneous correlations. Examples of inverting nonlinear
continuous time neural models using this procedure are described in
Valdes-Sosa et al. (1999), Riera et al. (2007b), Friston and Daunizeau
(2008), Marreiros et al. (2009), Stephan et al. (2008), and Daunizeau
et al. (2009b). Local linearization of this sort is used in all DCMs,
including those formulated in generalized coordinates of motion.

There are several well-known technical issues regarding contin-
uous model inversion:

1. The econometrics literature has been very much concerned with
identifiability in continuous time models—an issue raised by one of
us in the C&C series (Friston, 2009b) due to the non-uniqueness of
the inverse mapping of the matrix exponential operator(matrix
logarithm) for large sampling periods Δt. This is not a problem for
DCM, which parameterizes the state-equation directly in terms
of the connectivity A. However, autoregressive models (AR) try
to estimate A = exp AΔtð Þ directly, which requires a mapping

A =
1
Δt

ln Að Þ to get back to the underlying connectivity. Phillips

noted in the 70s that A is not necessarily invertible, unless one is
sampling at twice the highest frequency of the underlying signal
(the Nyquist frequency) (Phillips, 1973); in other words, unless
one samples quickly, in relation to the fluctuations in hidden states.
In econometrics, there are several papers that study the conditions
in which under-sampled systems can avoid an implicit aliasing
problem (Hansen and Sargent, 1983; Mccrorie and Chambers,
7 Note integration should not be computed this way since it is numerically unstable,
especially when the Jacobian is poorly conditioned. A list of robust and fast procedures
is reviewed in Valdes-Sosa et al. (2009a).
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2006; Mccrorie, 2003). This is not a problem for electrophysiolog-
ical models because sampling is fast relative to the underlying
neuronal dynamics. However, for fMRI this is not the case and AR
models provide connectivity estimates, A =

1
Δt

ln Að Þ∈ℂN×N that
are not necessarily unique (a phenomenon known as “aliasing” as
discussed below).We will return to this problem in the next
section, when considering the mediation of local (direct) and
global (indirect) influences over time. Although this “missing time”
problem precludes inference about coupling between neuronal
states that fluctuate quickly in relation to hemodynamics, one can
use AR models to make inferences about slow neuronal fluctua-
tions based on fMRI (e.g., the amplitude modulation of certain
frequencies; see Fig. 4). Optimal sampling for AR models has been
studied extensively in the engineering literature—the essential
point being that sampling should not be below or evenmuch above
the optimal choice that matches the natural frequencies (time-
constants) of the hidden states (Astrom, 1969; Larsson et al., 2006).

2. When the sampling period Δt is sufficiently small, the AR model is
approximately true. What is small? We found very few practical
recommendations, with the exception of Sargan (1974), who uses
heuristic arguments and Taylor expansions to suggest that a
sampling frequency 1.5 times faster than the Nyquist frequency
allows the use of a bilinear (or Tustin) approximation in (two stage
non-recursive) autoregression procedures. As shown in the
references cited above, it might be necessary to sample at several
times the Nyquist frequency to use AR models directly. However,
an interesting “Catch 22” emerges for AR models: The aliasing
problem mandates fast sampling, but fast sampling violates
Markovian (e.g., Gaussian noise) assumptions, if the true in-
novations are real (analytic) fluctuations.

3. A different (and a more complicated) issue concerns the
identifiability of models of neural activity actually occurring at
rates much higher than the sampling rates of fMRI, even when a
DCM is parameterized in terms of neuronal coupling. This is an
inverse problem that depends on prior assumptions. There are
lessons to be learned from the EEG literature here: Linear
deconvolution methods for inferring neural activity from EEG
proposed by Glover (1999) and Valdes-Sosa et al. (2009a)
correspond to a temporal version of the minimum norm and
LORETA spatial inverse solutions respectively. Riera et al. (2007a)
and Riera et al. (2006), proposed a nonlinear deconvolution
method. In fact, every standard SPM analysis of fMRI data is
effectively a deconvolution, where the stimulus function (that is
convolved with an assumed HRF) provides a generative model
whose inversion corresponds to deconvolution. In the present
context, the stimulus function provides the prior expectations
about neuronal activity and the assumed HRF places priors on the
ensuing hemodynamics. In short, model inversion or deconvolu-
tion depends on priors. The extent to which identifiability will
limit inferences about neuronal coupling rests on whether the
data supports evidence for different models of neuronal activity.
We already know that there is sufficient information in fMRI time
series to resolve DCMs with different neuronal connectivity
architectures (through Bayesian model comparison), provided
we use simple bilinear models. The issue here is whether we can
make these models more realistic (cf., the neural mass models
used for EEG) and still adjudicate among them, using model
evidences: When models are too complex for their data, their
evidence falls and model selection (identification) fails. This is an
unresolved issue.

As one can see from these points, the issue of inference from
discretised data depends on the fundamental frequencies of fluctu-
ations in hidden states, data sampling rate, the model, and the prior
information we bring to the inferential problem. When writing these
lines, we were reminded of the dictum, prevalent in the first years of
EEG source modeling, that one could “only estimate a number of
dipoles that was less than or equal to a sixth of the number of
electrodes”. Bayesian modeling has not increased the amount of
information in data but it has given us a principled framework to
optimize generative or forward models (i.e., priors) in terms of their
complexity, by choosing priors that maximize model evidence. This
has enabled advances in distributed source modeling and the
elaboration of better constraints (Valdés-Sosa et al., 2009b). One
might anticipate the same advances in causal modeling over the next
few years.

Time, frequency or generalized coordinates?

A last point to mention is that (prior to model inversion) it may be
convenient to transform the time domain data to a different
coordinate system, to facilitate computations or achieve a theoretical
objective. In particular transformation to the frequency domain has
proved quite useful.

1. This was proposed first for generic linear models in both
continuous and discrete time (Robinson, 1991). More recently a
nonparametric frequency domain approach has been proposed for
Granger Causality (Dhamala et al., 2008).

2. A recent stream of EEG/MEG effective connectivity modeling has
been introduced by Nolte et al. (2008), Marzetti et al. (2008), Nolte
et al. (2009), andNolte et al. (2006) with the realization that time
(phase) delays are reflected in the imaginary part of the EEG/MEG
cross-spectra, whereas the real part contains contemporaneous
contributions due to volume conduction.

3. Linearised versions of nonlinear DCMs have also been transformed
successfully to the frequency domain (Moran et al., 2008; Robinson
et al., 2008).

As noted above Friston (2008a,b) has proposed a transformation to
generalized coordinates, inspired by their success in physics. This
involves representing the motion of the system by means of an
infinite sequence of derivatives. The truncation of this sequence
provides a summary of the time-series, in much the same way that a
Fourier transform provides a series of Fourier coefficients. In classical
time series analysis, the truncation is based on frequencies of interest.
In generalized coordinates, the truncation is based on the smoothness
of the time series. This use of generalized coordinates in causal
modeling is predicated on the assumption that real stochastic
processes are analytic (Belyaev, 1959).

Model inversion and inference

There are many inversion schemes to estimate the states,
parameters and hyperparameters of a model. Some of the most
commonly used are variants of the Kalman Filer,Monte-Carlomethods
and variational methods (se e.g., Daunizeau et al., 2009b for a
variational Bayesian scheme). As reviewed in Valdes-Sosa et al.
(2009a) the main challenges are how to scale the numerics of these
schemes for more realistic and extensive modeling. The one thing all
these schemes have in common is that they (implicitly or explicitly)
optimize model parameters with respect to model evidence. In this
sensemodel inversion and inference onmodels per se share a common
objective; namely to maximize the evidence for a model.

Selecting or optimizing a model for effective connectivity ulti-
mately rests on model evidence used in model comparison or
averaging. The familiar tests for GCM (i.e. Dickey–Fuller test) are
based on likelihood comparisons. As noted above, the likelihood (the
probability of the data given a model and its parameters) is the same
as model evidence (the probability of the data given a model), if we
ignore uncertainty about the model parameters. However, the models
considered in this paper, that include qualitative prior beliefs call for
measures of goodness that balance accuracy (expected log-likelihood)



8 It might be preferable to use a more precise term “predictability” instead of
influence.

9 DAG = Directed Acyclic Graph. The word ‘graph’ refers to the mapping from the
set of (factorized) joint probability densities over X and the actual directed acyclic
graph that represents the set of conditional independencies implicit in the
factorization of the joint pdf p(x).
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with model complexity. All of these measures (AIC, BIC, GCV, and
variational free energy) are approximations to the model evidence
(Friston, 2008a,b). Model evidence furnishes the measure used for the
final probabilistic inference about a causal architecture (i.e., causal
inference). Clearly, to carry out model comparison one must have an
adequate set of candidates. Model Diagnostics are useful heuristics in
this context that ensure that the correct models have been chosen for
comparison. An interesting example that can be used to perform a
detailed check of the adequacy of models is to assess the spatial and
temporal whiteness of the residual innovation of the model which is
illustrated in (Galka et al., 2004). More generally, the specification and
exploration of model sets (spaces) probably represents one of the
greatest challenges that lie ahead in this area.

Summary

In summary, we have reviewed the distinction between autore-
gression (AR) models and models formulated in continuous time
(DCM). We have touched upon the important role of local linearisa-
tion in mapping from continuous dynamics of hidden states to
discrete data samples and the implications for sampling under AR
models. In terms of model inversion and selection, we have
highlighted the underlying role played by model evidence and have
cast most of the cores issues in model identifiability and selection in
terms of Bayesian model comparison. This subsumes questions about
the complexity of models that can be supported by fMRI data; through
to ultimate inferences about causality, in terms of which causal model
has the greatest evidence. This section concludes our review of
pragmatic issues and advances in the causal modeling of effective
connectivity. We now turn to more conceptual issues and try to link
the causal modeling for Neuroimaging described in this section to
classical constructs that have dominated the theoretical literature
over the past few decades.

Statistical causal modeling

In this section, we review some key approaches to statistical
causality. At one level, these approaches have had relatively little
impact on recent developments in causal modeling in Neuroimaging,
largely because they based on classical Markovian (and linear) models
or ignore dynamics completely. However, this field contains some deep
ideas andwe include this section in the hope that itwill illuminate some
of the outstanding problemswe facewhenmodeling brain connectivity.
Furthermore, it may be the case that bringing together classical
temporal precedence treatments with structural causal modeling will
finesse these problems and inspire theoreticians to tackle the special
issues that attend the analysis of biological time series.

Philosophical background

Defining, discovering and exploiting causal relations have a long and
enduring history (Bunge, 2009). Examples of current philosophical
debates about causality can be found in Woodward (Woodward, 2003)
and Cartwright (2007). An important concept, stressed byWoodward, is
that a cause is something that “makes things happen”. Cartwright, on the
other hand (Cartwright, 2007), argues for the need to separate the
definition, discovery and use of causes; stresses the pluralism of the
concept of cause and argues for the use of “thick causal concepts”. An
example of what she calls a “thin causal claim”would be that “activity in
the retina causes activity in V1”—represented as a directed arrow from
one structure to the other. Instead, itmight bemore useful to say that the
Retina is mapped via a complex logarithmic transform to V1 (Schwartz,
1977). A “thick causal” explanation tries to explain how information is
actually transmitted. For a different perspective see Glymour (2009). It
may be that both thin and thick causal concepts are useful when
characterizing complex systems.
Despite philosophical disagreements about the study of causality,
there seems to be a consensus that causal modeling is a legitimate
statistical enterprise (Cox and Wermuth, 2004; Frosini, 2006; Pearl,
2003). One can clearly differentiate two current streams of statistical
causal modeling; one based on Bayesian dependency graphs or
graphical models which has been labeled as “Structural Causal
Modeling” by White and Lu (2010). The other, apparently unrelated,
approach rests on some variant of Granger Causality for which we
prefer the terms WAGS influence8 for reasons stated below. WAGS
influence modeling appeals to an improved predictability of one time
series by another. We will describe these two streams of modeling,
which leads us to anticipate their combination in a third line of work,
called Dynamic Structural Systems (White and Lu, 2010).

Structural causal modeling: graphical models and Bayes–Nets

Structural Causal Modeling originated with Structural Equation
Modeling (SEM) (Wright, 1921) and is characterized by the use of
graphical models, in which direct causal links are encoded by directed
edges in the graph (Lauritzen, 1996; Pearl, 2000; Spirtes et al., 2000).
Ideally these edges can be given a mechanistic interpretation
(Machamer et al., 2000). Using these graphs, statistical procedures
then discover the best model (graph) given the data (Pearl, 2000;
2003; Spirtes et al., 2000). As explained in the previous section, the
“best” model has the highest evidence. There may be many models
with the same evidence; in this case, the statistical search produces an
equivalence class of models with the same explanatory power. With
regard to effective connectivity, themultiplicity of possibly equivalent
models has been highlighted by Ramsey et al. (2010).

This line of work has furnished Statistical Causal Modeling with a
rigorous foundation and specific graphical procedures such as the
“Back-door” and “Front-door” criteria, to decide whether a given
causal model explains observational data. Here, causal architectures
are encoded by the structure of the graph. In fMRI studies these
methods have been applied by Ramsey et al. (2010) to estimate
directionality in several steps, first looking for “unshielded colliders”
(paths of the form A→B←C) and then finding out what further
dependencies are implied by these colliders. We now summarize
Structural Causal Modeling, as presented by Pearl (2000).

One of the key concepts in Pearl's causal calculus is interventional
probabilities, which he denotes p(x\ i|do(Xi=xi)) or more simply p(x\ i|
do(xi)), which are distinct from conditional probabilities p(x\ i|Xi=xi).
Pearl highlights the difference between the action do(Xi=xi) and the
observation Xi=xi. Note that observing Xi=xi provides information
both about the children and parents of Xi in a directed acyclic graph
(DAG9). However, whatever relationship existed between Xi and its
parents prior to action, this relationship is no longer in effect whenwe
perform the action do(Xi=xi). Xi is held fixed by the action do(Xi=xi),
and therefore cannot be influenced. Thus, inferences based on
evaluating do(Xi=xi) are different in nature from the usual
conditional inference. Interventional probabilities are calculated via
a truncated factorization; i.e. by conditioning on a “mutilated graph”,
with the edges (links) from the parents of Xi removed:

p x =i jdo xið Þ
� �

= ∏
j≠i

p xj jpaj
� �

=
p xð Þ

p xi jpaið Þ : ð7Þ



Fig. 5. Themissing region problem. a) Two typical graphical models including a hidden node (node 2).b) Marginal dependence relationships implied by the causal structure depicted
in (a), after marginalizing over the hidden node 2; the samemoral graph can be derived from directed (causal) graphs A and B. c) Causal relationships implied by the causal structure
depicted in (a), after marginalizing over the hidden node 2. Note that these are perfectly consistent with the moral graph in (b), depicting (non causal) statistical dependencies
between nodes 1 and 3, which are the same for both A and B.
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Here, paj denotes the set of all the parents of the jth node in the
graph and p(x) is the full joint distribution. Such interventional
probabilities exhibit two properties:

P1 : p xi jdo paið Þð Þ = p xi jpaið Þ
P2 : p xi jdo paið Þ; do sð Þð Þ = p xi jdo paið Þð Þ

�
ð8Þ

for all i and for every subset S of variables disjoint of {Xi, PAi}. Property
1 renders every parent set PAi exogenous relative to its child Xi,
ensuring that the conditional p(xi|pai) probability coincides with the
effect (on Xi) of setting PAi to pai by external control. Property 2
expresses the notion of invariance: once we control its direct causes
PAi, no other interventions will affect the probability of Xi. These
properties allow us to evaluate the (probabilistic) effect of in-
terventions from the definition of the joint density p(x) associated
with the pre-intervention graph.

This treatment of interventions provides a semantics for notions
such as “causal effects” or “causal influence”. For example, to see
whether a variable Xi has a causal influence on Xj, we compute (using
the truncated factorization in Eq. (7)) the marginal distribution of Xj

under the actions do(Xi=xi) and check whether that distribution is
sensitive to xi. It is easy to see that only descendants of Xi can be
influenced by Xi; deleting the factor p(xi|pai) from the joint
distribution turns Xi into a root node10 in the mutilated graph. This
can be contrasted with (undirected) probabilistic dependencies that
can be deduced from the factorization of the joint distribution per se.
These dependencies can be thought as (non-causal and non-directed)
correlations among measured variables that can be predicted on the
basis of the structure of the network.

In the context of brain connectivity, themeasures of interventional
and conditional probabilities map onto the notions of effective
connectivity and functional connectivity respectively. Let us consider
two typical situations that arise in the context of the missing region
problem. These are summarized in Fig. 5.

Consider Fig. 5a. In situation A, node 1 influences node 2, which
influences node 3. That is, the causal effect of 1 on 3 is mediated by 2.
The joint distribution of the graphical causal model can be factorized
as pA(x)=p(x3|x2)p(x2|x1)p(x1). In situation B, both 1 and 3 have a
common cause: node 2 influences both 1 and 3. The joint distribution
of this graphical causal model can then be factorized as: pB(x)=p(x1|
x2)p(x3|x2)p(x2). It is easy to prove that in both cases (A and B), 1 and
3 are conditionally independent given 2; i.e., p(x1, x3|x2)=p(x1|x2)p(x3|
x2). This means that observing node 1 (respectively 3) does not
convey additional information about 3 (respectively 1), oncewe know
10 A root node is a node without parents. It is marginally independent of all other
variables in a DAG, except its descendents.
2. Furthermore, note that 1 and 3 are actually marginally dependent;
i.e., p x1; x3ð Þ = ∫p xð Þdx2≠p x1ð Þp x3ð Þ. This means that whatever value
X2 might take, X1 and X3 will be correlated. Deriving the marginal
independencies from the DAG produces an undirected graph (see, e.g.,
Fig. 5b). This undirected graph is called a moral graph and its
derivation is called the moralization of the DAG. For example,
moralizing the DAG A produces a fully connected moral graph.

In brief, both situations (A and B) are similar in terms of their
statistical dependencies. In both situations, functional connectivity
methods would recover the conditional independence of nodes 1 and
3 if node 2 was observed, and their marginal dependence if it is not
(see Fig. 5b).However, the situations in A and B are actually very
different in terms of the causal relations between 1 and 3. This can be
seen using the interventional probabilities defined above: let us
derive the interventional probabilities expressing the causal influence
of node 1 onto node 3 (and reciprocally) in situation A:

pA x3 jdo x̃1ð Þð Þ = ∫pA x2; x3 jdo x̃1ð Þð Þdx2
= ∫p x3 jx2ð Þp x2 j x̃1ð Þdx2
= p x3 jx̃1ð Þ

ð9Þ

pA x1 jdo x̃3ð Þð Þ = ∫pA x1; x2 jdo x̃3ð Þð Þdx2
= p x1ð Þ∫p x2 jx1ð Þdx2
= p x1ð Þ:

ð10Þ

Eq. (8) simply says that the likelihood of any value that x3 might
take is dependent upon the value x̃1 that we have fixed for x1 (by
intervention). In contradistinction, Eq. (9) says that the likelihood of
any value that x1 might take is independent of x3. This means that
node 1 has a causal influence on node 3, i.e. there is a directed
(mediated through 2) causal link from 1 to 3. The situation is quite
different in B:

pB x3 jdo x̃1ð Þð Þ = ∫pB x2; x3 jdo x̃1ð Þð Þdx2
= ∫p x3 jx2ð Þp x2ð Þdx2
= p x3ð Þ

pB x1 jdo x̃3ð Þð Þ = ∫pB x1; x2 jdo x̃3ð Þð Þdx2
= ∫p x1 jx2ð Þp x2ð Þdx2
= p x1ð Þ:

ð11Þ

This shows that nodes 1 and 3 are not influenced by intervention
on the other. This means that here, there is no causal link between 1
and 3.This is summarized in Fig. 5c, which depicts the corresponding
‘effective’ causal graphs, having marginalized over node 2.

Causal calculus provides a simple but principled perspective on the
“missing region” problem. It shows that effective connectivity analysis

image of Fig.�5
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can, in certain cases, address a subset of brain regions (subgraph),
leaving aside potential variables (e.g., brain regions) that might
influence the system of interest. The example abovemakes the precise
confines of this statement clear: one must be able to perform
interventional actions on source and target variables. Given that the
principal ‘value-setting’ interventions available to us in cognitive
neuroscience are experimental stimulus manipulations, our capacity
for such interventions are generally limited to the primary sensory
cortices. Intervention beyond sensorimotor cortex is much more
difficult; although one could employ techniques such as transcranial
magnetic stimulation (TMS) to perturb activity in superficial cortical
areas. However, the perturbation in TMS is unnatural and known to
induce compensatory changes throughout the brain rather than well-
defined effects in down-stream areas.

The sameundirected graph can be derived from themoralization of a
set of DAGs (c.f. from Figs. 5a and b). This set contains a (potentially
infinite) number of elements, and is referred to as the equivalent class. As
stated by Pearl, the identification of causal (i.e., interventional)
probabilities from observational data requires additional assumptions
or constraints (see also Ramsey et al., 2010). Pearl mentions two such
critical assumptions: (i) minimality and (ii) structural stability. Minim-
ality appeals to complexity minimization, when maximizing model
evidence (c.f., Occam's razor). In brief, among a set of causalmodels that
would explain the observed data, onemust choose the simplest (e.g., the
one with the fewest parameters). Structural stability (also coined
‘faithfulness’) is a related requirement that is motivated from the fact
that an absence of causal relationships is inferred from an observed
absence of correlation. Therefore, if no association is observed, it is
unlikely to be due to the particular instantiation of a given model for
which this independence would be predicted (see below). Rather, it is
more likely to be explained in terms of a model that would predict, for
any parameter setting, the observed absence of correlation. This clearly
speaks to the convergent application, mentioned above, of data driven
exploratory approaches that scan the largest model space possible for
correlations to be explained and a model driven confirmatory approach
that appeal to structural stability: Within a Bayesian setting, we usually
specify a prior distribution p(θ|m) over model parameters, which are
usually assumed to be independent. This is justified when the
parameters representmechanisms that are free to change independent-
ly of one another—that is, when the system is structurally stable. In other
terms, the use of such prior favors structurally stable models. In most
cases, stability and minimality are sufficient conditions for solving the
structure discovery inverse problem in the context of observational data.
If this is not sufficient to reduce the cardinality of the equivalent class,
one has to resort to experimental interventions.11 Within the context of
Neuroimaging, this would involve controlling the system by optimizing
the experimental design in terms of the psychophysical properties of the
stimuli and/or through direct biophysical stimulation (e.g., transcranial
magnetic stimulation – TMS – or deep brain stimulation—DBS).
Summary

The causal calculus based on graphical models has some important
connections to the distinction between functional and effective
connectivity and provides an elegant framework in which one can
deal with interventions. However, it is limited in two respects. First, it
is restricted to discovering conditional independencies in directed
acyclic graphs. This is a problem because the brain is a directed cyclic
graph—every brain region is reciprocally connected (at least poly-
synaptically) and every computational theory of brain function rests
11 For example, the back- and front-door criteria (Pearl, 2000) can be used to
optimize the intervention.
on some form of reciprocal or reentrant message passing. Second, the
calculus ignores time: Pearl argues that what he calls a ‘causal model’
should rest upon functional relationships between variables, an example
of which is structural equation modeling (SEM). However, these
functional relationships cannot deal with (cyclic) feedback loops. In
fact, DCM was invented to address these limitations, after evaluating
structural causalmodeling for fMRI time-series. This is why itwas called
dynamic causal modeling to distinguish it from structural causal
modeling (Friston et al., 2003). Indeed, Pearl (2000) argues in favor of
dynamic causal models, when attempting to identify what physicists
call hysteresis effects, whereby the causal influence depends upon the
history of the system. Interestingly, the DAG limitation can be finessed
by considering dynamics and temporal precedence within structural
causal modeling. This is because the arrow of time turns directed cyclic
graphs into directed acyclic graphs, when the nodes are deployed over
successive time points. This leads us to an examination of prediction-
based measures of functional relations.

WAGS influence

The second stream of statistical causal modeling is based on the
premise that a cause must precede and increase the predictability of
its consequence. This type of reasoning can be traced back at least to
Hume (Triacca, 2007) and is particularly popular in time series
analysis. Formally, it was originally proposed (in an abstract form) by
Wiener (1956) (see Appendix A) and introduced into data analysis by
Granger (1963). Granger emphasized that increased predictability is a
necessary but not sufficient condition for a causal relation to exist. In
fact, Granger distinguished between true causal relations and “prima
facie” causal relations (Granger, 1988); the former only to be inferred
in the presence of “knowledge of the state of the whole universe”.
When discussing “prima facie causes” we recommend the use of
the neutral term “influence” in agreement with other authors
(Commenges & Gégout-Petit, 2009; Gégout-Petit & Commenges,
2010). Additionally, it should be pointed out that around the same
time as Grangers work, Akaike (1968), and Schweder (1970)
introduced similar concepts of influence, prompting us to refer to
“WAGS influence modeling” (for Wiener–Akaike–Granger–Schweder).
This is a generalization of a proposal by Aalen (1987) and Aalen and
Frigessi (2007) who were among the first to point out the connections
between the Granger and Shweder concepts.

An unfortunate misconception in Neuroimaging identifies WAGS
influence modeling (WAGS for short) with just one of the specific
proposals (among others) dealt with by Granger; namely, the
discrete-time linear Vector Autoregressive Model (VAR). This simple
model has proven to be a useful tool in many fields, including
Neuroimaging—the latter work well documented in Bressler and Seth
(2010). However, this restricted viewpoint overlooks the fact that
WAGS has dealt with a much broader class of systems:

1. Classical textbooks, such as Lutkephol (2005), show howWAGS can
applied VARmodels, infinite order VAR, impulse response functions,
Vector Autoregressive Moving Average models (VARMA), etc.

2. There are a number of nonlinear WAGS methods that have been
proposed for analyzing directed effective connectivity (Freiwald
et al., 1999, Solo, 2008; Gourieroux et al., 1987; Marinazzo et al.,
2011; Kalitzin et al., 2007)

3. Early in the econometrics literature, causal modeling was extended
to linear and nonlinear random differential equations in continuous
time (Bergstrom, 1988). These initial efforts have been successively
generalized (Aalen, 1987; Commenges & Gégout-Petit, 2009; Comte
& Renault, 1996; Florens & Fougere, 1996; Gill & Petrović, 1987;
Gégout-Petit & Commenges, 2010; Mykland, 1986; Petrović &
Stanojević, 2010) to more inclusive types of dynamical systems.

4. Schweder (1970) describes WAGS concepts for counting processes
in continuous, time which has enjoyed applications in Survival
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Analysis—a formalism that could well be used to model in-
teractions expressed in neural spike train data.

We now give an intuitive explanation of some of these definitions
(the interested reader can refer to the technical literature for more
rigorous treatments). Let us again consider triples of (possibly vector)
time series X1(t), X2(t), X3(t), where we want to know if time series
X1(t) is influenced by time series X2(t) conditional on X3(t). This last
variable can be considered as any time series to be controlled for (if
we were omniscient, the “entire universe”!). Let X[a, b]={X(t)|t∈ [a,
b]} denote the history of a time series in the discrete or continuous
time interval [a, b]. There are several types of influence. One
distinction is based on what part of the present or future of
X1(t) can be predicted by the past or present of X2(τ) τb t. This
leads to the following classification:

• If X2(τ): τb t, can influence any future value of X1(s) for sN t, then it is
a global influence.

• If X2(τ) τb t, can influence X1(t) it is a local influence.
• If X2(τ) τ= t can influence X1(t) it is a contemporaneous influence.

Another distinction is whether one predicts the whole probability
distribution (strong influence) or only given moments (weak
influence). These two classifications give rise to six types of influence
as schematized in Fig. 6 and Table 4 and 5. Briefly, the formal
definitions are as follows.

X1(t) is strongly, conditionally, and globally independent of X2(t)
given X3(t) (not SCGi), if

P X1 ∞; tð � jX1 t;−∞ð �;X2 t;−∞ð �;X3 t;−∞ð �ð Þ

= P X1 ∞; tð � jX1 t;−∞ð �;X3 t;−∞ð �ð Þ:

ð12Þ
Fig. 6. Wiener–Akaike–Granger–Schweder (WAGS) Influences. This figure illustrates the dif
process, which may be influencing the differentiable continuous time process X1(t) (to
predictability in the immediate future (dt), or global influence (dashed arrow) at any set of fu
influence (bottom), and a weak influence (top) if predictability is limited to the moments
When this condition does not hold we say X2(t) strongly,
conditionally, and globally influences (SCGi) X1(t) given X3(t). Note
that the whole future of Xt is included (hence the term “global”). And
the whole past of all time series is considered. This means these
definitions accommodate non-Markovian processes (for Markovian
processes, we only consider the previous time point). Furthermore,
these definitions do not depend on an assumption of linearity or any
given functional form (and are therefore applicable to any of the state
equations in Table 2). Note also that this definition is appropriate for
point processes, discrete and continuous time series, even for
categorical (qualitative valued) time series. The only problem with
this formulation is that it calls on the whole probability distribution
and therefore its practical assessment requires the use of measures
such as mutual information.

X1(t) is weakly, conditionally and globally independent of X2(t)
given X3(t) (not WCGi), if

E X1 ∞; tð � jX1 ∞; tð �;X2 t;−∞ð �;X3 t;−∞ð �½ � = E X1 ∞; tð � jX1 t;−∞ð �;X3 t;−∞ð �½ �:
ð13Þ

If this condition does not hold we say X2(t) weakly, conditionally
and globally influences (WCGi) X1(t) given X3(t). This concept
extends to any number of moments (such as the variance of the
process). There are a number of relations between these concepts: not
SCGi implies not WCGi for all its moments and the converse is true for
influences (WCGi implies SCGi), but we shall not go into details here;
see Florens andMouchart (1985), Florens (2003), Florens and Fougere
(1996), and Florens and Mouchart (1982).

Global influence refers to influence at any time in the future. If we
want to capture the idea of immediate influence we use the local
ferent types of WAGS influence measures. In the middle X2(t) a continuous time point
p and bottom) This process may have local influence (full arrows), which indicate
ture times. If predictability pertains to thewhole probability distribution, this is a strong
(e.g., expectation) of this distribution.
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Table 4
Conditional Independence relations.

Strong (Probability Distribution) Weak (Expectation)

Global (for all horizons) Strongly, Conditionally, Globally, independence (not SCGi) Weakly, Conditionally, Globally, independence (not WCGi)
Local (Immediate future) Strongly, Conditionally, Locally, independence (not SCLi) Weakly, Conditionally, Globally, independence (not WCLi)
Contemporaneous Strongly, Conditionally, Contemporaneously, independence (not SCCi) Weakly, Conditionally, Contemporaneously, independence (not WCCi)

Table 5
Types of Influence defined by absence of the corresponding independences in Table 4.

Strong (Probability Distribution) Weak (Expectation)

Global ( for all horizons) Strongly, Conditionally, Globally, influence (SCGi)
- Strong Granger or Sims influence

Weakly, Conditionally, Globally, influence (WCGi)
- Weak Granger or Sims influence

Local (Immediate future) Strongly, Conditionally, Locally, influence (SCLi)
- Influence (Possibly indirect)

Weakly, Conditionally, Globally, influence (WCLi)
- Direct Influence

Contemporaneous Strongly, Conditionally, Contemporaneously, influence (SCCi) Weakly, Conditionally, Contemporaneously, influence (WCCi)
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concepts defined above. The concepts of strong andweak local influence
have very simple interpretations if we aremodeling in discrete time and
events occur every Δt. To see this, consider the expectation basedweak
conditionally local independence (not WCLi) in discrete time:

E X1 t + Δtð Þ jX1 t;−∞½ �;X2 t;−∞½ �;X3 t;−∞½ �½ �

= E X1 t + Δtð Þ jX1 t;−∞½ �;X3 t;−∞½ �½ �:

ð14Þ

If this condition does not hold we have that X2(t) weakly,
conditionally and locally influences (WCLi) X1(t) given X3(t). Strong
local concepts are defined similarly by considering conditional in-
dependences. For the usual discrete time, real valued time series of
Neuroimaging, all these concepts are equivalent as shown by Florens
and Mouchart (1982) and Solo (2007). As an example, consider the
multivariate autoregressive model of the previous section

X t + Δtð Þ = ∑
p

k=1
AkX t− k−1ð ÞΔtð Þ + e t + Δtð Þ ð15Þ

with the innovation term et+Δt being GWN with covariance
matrix Σ :=Σdiscrete. For this familiar case E X t + Δt½ � jX t;−∞½ �½ � =
∑kAkX t− k−1ð ÞΔtð Þ, and analyzing influence reduces to finding
which coefficients of the autoregressive coefficients are zero.
However, in continuous time there is a problem when Δt→0, since
the stochastic processes we are dealing with are at least almost
surely continuous and limΔt→0E X1 t + Δtð ÞjX1 t;−∞½ �;X2 t;−∞½ �;X3 t;−∞½ �½ � =
limΔt→0 E X1 t + Δ jð Þ½ � is trivially satisfied (limits are now taken in the
sense of a quadraticmean) because the X1(t) process is path continuous—
it will only depend on itself. To accommodate this situation instead we
shall use the following definition for not WCLi (Commenges & Gégout-
Petit, 2009; Comte&Renault, 1996; Florens&Fougere, 1996;Gégout-Petit
& Commenges, 2010; Renault, Sekkat, & Szafarz, 1998):

lim E
Δt→0

X1 t + Δtð Þ−X1 tð Þ
Δt jX1 t;−∞ð �;X2 t;−∞ð �;X3 t;−∞ð �

	 

= lim E

Δt→0

X1 t + Δtð Þ−X1 t + Δtð Þ
Δt jX1 t;−∞ð �;X3 t;−∞ð �

	 

:

ð16Þ

As noted by Renault et al. (1998) (whom we follow closely here),
for finite Δt this is equivalent to the usual definitions. Now how does
this definition relate to the linear SDE in Eq. (3)?
For three time series:

dX1 tð Þ
dX2 tð Þ
dX3 tð Þ

0@ 1A = A
X1 tð Þ
X2 tð Þ
X3 tð Þ

24 35dt + dB tð Þ: ð17Þ

Integrating from t to Δt, we have

X1 t + Δtð Þ−X1 t + Δtð Þ = ∫
t + Δt

t

h
a 1;1ð ÞX τð Þ + a 1;2ð ÞX2 τð Þ

+ a 1;3ð ÞX3 τð Þ+
i
dτ+ σbb B1 t+Δtð Þ;−B2 tð Þð Þ

⇒

limE
Δt→0

X1 t + Δtð Þ−X2 tð Þ
Δt jX1 tð Þ;X2 tð Þ;X3 tð Þ

	 

= a 1;1ð ÞX2 τð Þ

+ a 1;2ð ÞX2 τð Þ + a 1;3ð ÞX3 τð Þ:

This shows that, in effect, the detection of an influence will depend
on whether the coefficients of the matrix A are zero or not. For
nonlinear systems this holds with the local linear approximation. This
treatment highlights the goal of WAGS, like structural causal
modeling, is to detect conditional independencies; in this (AR)
example, weak and local.

The issue of contemporaneous influence measures is quite
problematic. In discrete time, it is clear that the covariance matrix
of two or more time series may have cross-covariances that are due to
an “environmental” or missing variable Z(t). This was discussed by
Akaike and a nice example of this effect is described in Wong and
Ozaki (2007), which also explains the relation of the Akaike measures
of influence to others used in the literature. For continuous time
(Comte and Renault, 1996) define strong (second order) conditional
contemporaneous independence (not SCCi) if:

cov X1 ∞; tð �;X2 ∞; tð � jX1 t;−∞½ ÞX2 t;−∞½ Þ;X3 t;−∞½ Þ½ � = 0: ð18Þ

Note that this is the same definition for continuous time as for the
discrete AR example (Eq. (15)) and is equivalent to requiring that the
elements of the corresponding innovation covariance matrix Σ be
zero. These authors then went on to define weak contemporaneous
conditional independence (not WCCi) if:

lim
Δt→0

cov X1 t + Δtð Þ;X2 t + Δtð Þ jX1 t;−∞½ Þ;X2 t;−∞½ Þ;X3 t;−∞½ Þ½ �f g = 0:

ð19Þ
In the absence of these conditions we have strong (weak)

contemporaneous conditional influences which are clearly non-
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directional. In his initial paper (Granger, 1963) defined a contem-
poraneous version of his influence measure in discrete time. Much
later, (Geweke, 1984)decomposed his own WAGS measure into a
sum of parts, some depending on lag information and others
reflecting contemporaneous (undirected) influences, see in these
C&C (Bressler and Seth, 2010). However, Granger (in later
discussions) felt that if the system included all relevant time series
this concept would not be valid, unless these influences were
assigned a directionality (see Granger, 1988, pp. 204–208). In this
sense, he was proposing a Structural Equation Modeling approach
to the covariance structure of the autoregressive model innovations.
As will be mentioned below (WAGS influence section) this is
something that has been explored in the econometrics literature by
Demiralp and Hoover (2008), Moneta and Spirtes (2006), but not to
our knowledge in Neuroimaging.

More general models
As we have seen, strong global measures of independence are

equivalent to conditional independence and are therefore applicable
to very general stochastic processes. For weak local conditional
independence, the situation is a little more difficult andwe have given
examples, which involve a limit in the mean of a derivative-type
operator expression. Themore general theory, too technical to include
here, entails successive generalizations by Mykland (1986), Aalen
(1987), Commenges and Gégout-Petit (2009), and Gégout-Petit and
Commenges (2010). The basic concept can be stated briefly as follows
(we drop conditioning on a third time series for convenience).
Suppose we have stochastic processes that are semi-martingales of
the form, X(t)=PX(t)+MX(t). Here PX(t) is a predictable stochastic
process12 of bounded variation, which is known as the “compensator”
of the semi-martingale, and Mt

X is a martingale.13 Predictability is the
key property that generalizes Wiener's intuition. The martingale
component is the unpredictable part of the stochastic process we are
interested in.14 Now suppose we have two stochastic processes X(t)
and W(t). If:

1. The martingalesMX1 andMX2 are orthogonal (no contemporaneous
interactions).

2. PX1(t) is measurable15 with respect to X1[t,−∞] only (without
considering X2(t)).

then X1(t) is said to be weakly locally independent of X2(t). In
Gégout-Petit and Commenges (2010) the concept of ~WLCi is
generalized to a general class of random phenomena that include
random measures, marked point processes, diffusions, and diffu-
sions with jumps, covering many of the models in Table 2. In fact,
this theory may allow unification of the analysis of random
behavioral events, LFP, spike recordings, and EEG, just to give a
few examples.
12 Roughly speaking, if PX(t)is a predictable process, then it is “known” just ahead of
time t. For a rigorous definition and some discussion see http://myyn.org/m/article/
predictable-process/).
13 For a martingale M(t),E(M(t+ s)|X[t,−∞])=M(t) for all t and s. This states that
the expected value ofM(t+s) is that at time t, there is no “knowledge” (in the sense of
expected value) for the future from the past, hence this type of process is taken as a
representation of unpredictability.
14 This is a form of the famous Doob–Meyer decomposition of a stochastic process
(Medvegyev, 2007).
15 Roughly speaking PX(t) is measurable with respect to the process X1[t,−∞] and
not X2[t,−∞] if all expected values of PX(t) can be obtained by integrating X1[t,−∞]
without reference to X2[t,−∞]. The technical definition can be found in Medvegyev
(2007). Basically this definition is based on the concept of a “measurable function”
extended to the sets of random variables that comprise the stochastic processes.
Direct influence
Weak local independence might be considered an unnecessarily

technical condition for declaring the absence of an influence; in that
strong (local or global) influence measures should be sufficient.
An early counterexample of this was provided by Renault et al.
(1998), where they considered a model where X(t) is ~WCLi of W(t),
given Z(t). See Fig. 7 for an illustration of this divergence between
local and global influences. This has lead Commenges and Gégout-
Petit (2009) to define WCLi as the central concept for “direct
influence” whereas SCGi is an influence that can be mediated directly
or indirectly through other time series.

An important point here is the degree to which the definition of
WAGS influence depends on the martingale concept or, indeed, on
that of a stochastic process. As discussed in The observation equation
section, there are a number of instances in which Markovian models
developed for financial time series may not apply for Neuroimaging
data. However, the concepts are probably generally valid, as we shall
illustrate with some examples:

• The analytical randomprocesses used in generalized coordinates are
quite different from those usually studied in classical SDE theory but
have been known for a long time (Belyaev, 1959). In fact, there has
been quite a lot of work on their predictability (Lyman et al., 2000)
and indeed there is even work on VARMA modeling of this type of
process (Pollock, 2010).

• We have already seen that the definitions of influence do not
depend on Markovian assumptions as noted by Aalen (1987).

• The use of deterministic bilinear systems in DCM (Penny et al.,
2005) suggests that (non-stochastic) ODEs may be incorporated
into the WAGS framework. This sort of assimilation has in fact been
proposed by Commenges and Gégout-Petit (2009) as a limiting case
of the definition based on semi-martingales above. Extensions of the
definition might be required when dealing with chaotic dynamics
but, even here, measure theoretic definitions are probably valid.16

An interesting discussion of determinism versus stochastics can be
found in Ozaki (1990).

The use or development of WAGS theory for systems that were not
initially considered by the aforementioned papers may well be a
fruitful area of mathematical research. In particular, WAGS may be
especially powerful when applied to processes defined on continuous
spatial manifolds (Valdes-Sosa, 2004; Valdés-Sosa et al., 2006).To our
knowledge, WAGS has yet to be developed for the case of continuous
time and space models; for example, those expressed as stochastic or
random Partial Differential Equations.

Testing and measuring WAGS influence
Above, we have covered different types of WAGS influence. With

these definitions in place we now distinguish between testing for the
presence of an influence (inference on models) and estimating the
strength of the influence (inference on parameters). There is an
extensive literature on this, which we shall not go into here. Examples
of testing versus measuring for discrete time VAR models include the
Dickey–Fuller test and the Geweke measure of influence. In the
electrophysiological literature, there are a number of measures
proposed. A review and a toolbox for these measures can be found
in Seth (2009). From the point of view of effective connectivity, many
of these measures have an uncertain status. This is because effective
connectivity is only defined in relation to a generative model. In turn,
this means there are only two quantities of interest (that permit
16 In particular the Sinai–Ruelle–Bowen measure for hyperbolic dynamical systems
(Chueshov, 2002).

http://myyn.org/m/article/predictable-process/
http://myyn.org/m/article/predictable-process/


Fig. 7. The missing time problem. This figure provides a schematic representation of spurious causality produced by sub-sampling. a) Three time series X1(t), X2(t), and X3(t) are
shown changing at an “infinitesimal” time scale with steps dt, as well as at a coarser sampled time scale with set Δt. Each time series, influences itself at later moments. In the
example X3(t) directly influences X2(t), with no direct influence on X1(t). In turn X2(t) directly influences X1(t), with no direct influence on X3(t). Finally X1(t) does not influence
either X3(t) nor X2(t). There are no contemporaneous influences.b) When only observing at the coarser time scale Δt, spurious contemporaneous influences (mediated by
intermediate nodes) appear between X2(t) and X1(t) and between X3(t) and X2(t). In addition a spurious direct influence appears between X3(t) and X1(t).The graphical
representations of the true and spurious causal relations are to the right of each figure where an arrow represents direct influence and a double arrow represents contemporaneous
influence. Estimating these spurious influences can only be avoided by explicitly modeling their effect from continuous models or using models such as VARMA models which are
resistant to this phenomena.
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inference on models and parameters respectively): the relative
evidence for a model with and without a connection and the estimate
(conditional density over) the connection parameter. For DCM the
first quantity is the Bayes factor and for GCM it is the equivalent
likelihood ratio (Granger causal F-statistics). In DCM, the conditional
expectation of the parameter (effective connectivity) measures the
strength, while for GCM this is the conditional estimate of the
corresponding autoregression coefficient. Other measures (e.g.,
partial directed coherence) are simply different ways of reporting
these conditional estimates. The next section explores the use of
WAGS measures of direct and indirect effects within the Structural
Causal modeling framework, thus bringing together the two major
strands of statistical causal modeling.
Dynamic structural causal modeling

There have been recent theoretical efforts to embed WAGS into
Structural Causal Modeling, which one could conceive of (in the
language of Granger) as providing a means to find out which “prima
facie causes” are actual “causes”. One of the first people to use the
methods from Structural Causal Modeling was Granger himself:
Swanson and Granger (1997) used Bayes-Net methods described in
Spirtes et al. (2000) in combination with autoregressive modeling.
Similar approaches have been adopted by Demiralp and Hoover
(2008) and Moneta and Spirtes (2006), which address the search for
directed contemporaneous influences mentioned above.

However, we should mention three current attempts to combine
Structural Causal Modeling with WAGS influence analysis. We shall
follow White in calling models that can be described by both
theoretical frameworks Dynamic Structural Systems:

1. Eichler has been developing graphical time series models that are
based on discrete time WAGS. Recently, in work with Didelez the
formalization of interventions has been introduced and equivalents
for the backdoor and front-door criteria of Structural Causality
have been defined. Thus, for discrete systems, this work could
result in practical criteria for defining when it is possible to infer
causal structure from WAGS in discrete time.

2. White has created a general formalism for Dynamical Structural
Systems (White and Lu, 2010) based on the concept of settable
systems (White and Chalak, 2009), which supports model
optimization, equilibrium and learning. The effects of intervention
are also dealt with explicitly.

3. Commenges and Gégout-Petit (2009) have also proposed a general
framework for causal inference that combines elements of Bayes–
Nets and WAGS influence and has been applied to epidemiology.
Specifically, as mentioned above, they introduce a very general
definition of WAGS that is valid for continuous/discrete time
processes. This definition can be applied to a mixture of SDEs and
point processes and distinguishes between direct influences and
indirect influences. They then relate the definition to graphical
models, with nodes connected by direct influences only and place
their work in the context of General Systems Theory. Interestingly,
they stress the need for an observation equation to assure causal
explanatory power.

The common theme of all these efforts is to supplement predict-
abilitywith additional criteria to extendWAGS influence to inference on

image of Fig.�7


Fig. 8. Direct and indirect effects. Causal relationships implied by the DCM given in
Eq. (23). On the left the apparent graph, that includes feedback which precludes causal
analysis. Note that the causal links are actually expressed through implicit delays,
whichmakes this graph a DAG, which is seenmore clearly on the right where each node
is expanded at several time instants.

356 P.A. Valdes-Sosa et al. / NeuroImage 58 (2011) 339–361
causal mechanisms. In the words of Gégout-Petit and Commenges
(2010): “A causal interpretation needs an epistemological act to link the
mathematical model to a physical reality.”Wewill illustrate these ideas
with a particular type of SSM, known as a (stochastic) dynamic causal
model (DCM):

ẋ = f x; θ;uð Þ + ω
y = g x; θð Þ + ε

�
ð20Þ

where x are (hidden) states of the system, θ are evolution parameters,
u are the experimental control variables, ω are random fluctuations
and ε is observation noise. Inverting this model involves estimating
the evolution parameters θ, which is equivalent to characterizing the
structural transition density p ẋ jdo xð Þð Þ, having accounted for obser-
vational processes.17 Here, time matters because it prevents instan-
taneous cyclic causation, but still allows for dynamics. This is because
identifying the structural transition density p ẋ jdo xð Þð Þ effectively
decouples the children of X(t) (in the future) from its parents (in the
past). Let us now examine a bilinear form of this model

f xð Þ = Ax + ∑
i
uiB

ið Þx + Cu + ∑
j
xjD

jð Þx: ð21Þ

Then we have:

A = lim
x;u→0

∂
∂x E ẋ jdo xð Þ½ �

B ið Þ =
∂2

∂x∂ui
E ẋ jdo xð Þ½ �

C = lim
x→0

∂
∂ui

E ẋ jdo xð Þ½ �

D jð Þ =
∂2

∂x∂xj
E ẋ jdo xð Þ½ �:

ð22Þ

The meaning of A; i.e. the effective connectivity is the rate of
change (relative to x) of the expected motion E Ẋ

h i
where X is held at

x≈0.18 It measures the direct effect of connections. Importantly,
indirect effects can be derived from the effective connectivity. To make
things simple, consider the following 3-region DCM depicted in Fig. 8:

ẋ1 = A11x1 + ω1
ẋ2 = A21x1 + A22x2 + ω2
ẋ3 = A31x1 + A32x2 + A33x3 + ω3:

ð23Þ

The effect of node 1 on node 3 is derived from the calculus of the
intervention do(X1=x1), where X1 is held constant at x1 but X2 is
permitted to run its natural course. This intervention confirms that
node 1 has both a direct and an indirect effect on node 3 (through
node 2).19 Interestingly, indirect effects can also be derived by
17 Note that the interventional interpretation of DCM is motivated by the (temporal)
asymmetry between the left- and the right-hand terms in Eq. (24). Its right-hand
term gives us the expected rate of change E Ẋ tð Þ

h i
of X(t) if we fix X(t) to be x (i.e. if we

perform the action do(x)), but does not provide any information about what X(t) is
likely to be if we fix its rate of change Ẋ tð Þ. This is best seen by noting that the system's
motion Ẋ tð Þ is a proxy for the system's future state X(t+Δt), which cannot influence its
own past X(t). Interestingly, this shows how interventional and prediction-over-time
oriented (i.e. WAGS) interpretations of DCM are related.
18 The original motivation for the neural evolution equation of DCM for fMRI data
considered the system's states x as being perturbations around the steady-state
activity x0. Thus, x=0 actually corresponds to steady (background) activity within the
network (x0).
19 Interventional probabilities in a dynamical setting have recently been derived in,
e.g., Eichler and Didelez (2010).
projecting Eq. (20) onto generalized coordinates; i.e. by deriving the
evolution function of the augmented state space x̃ = x; ẋ; x

::
;…ð ÞT (see

Friston et al., 2008a,b for a variational treatment of stochastic
dynamical systems in generalized coordinates). For example, deriving
the left and the right hand side of the last equation in Eq. (23) with
respect to time yields:

x
::
3 = Ã31x1 + Ã32x2 + Ã33x3 + ω̃3

Ã31 = A31 A11 + A33ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
direct effect

+ A32A21|fflfflffl{zfflfflffl}
indirect effect

Ã32 = A32 A22 + A33ð Þ

Ã33 = A33A33

ð24Þ

where ω̃3 lumps all stochastic inputs (and their time derivatives)
together. The total effect of node 1 onto node 3 is thus simply
decomposed through the above second order ODE (Eq. (24)), as the
sum of direct and indirect effects. One can see that the indirect causal
effect of node 1 on node 3 is proportional to the product A32A21 of the
path coefficients of the links [1→2] and [2→3].This speaks to a partial
equivalence of the do calculus and the use of generalized coordinates,
when modeling both direct and mediated (indirect) effects. This is
because embedding the evolution equation into a generalized
coordinates of motion naturally accommodates dynamics and the
respective contributions of direct/indirect connections (and correla-
tions induced by non-Markovian state noise ω). However, the
embedding (truncation) order has to be at least as great as the
number of intermediary links to capture indirect effects.

This type of reasoning is very similar to the treatment of direct and
indirect influences under WAGS influence and exemplifies a conver-
gence of Structural Causal (Bayes-Net) Modeling andWAGS influence.
One could summarize this ambition by noting the “arrow of time”
converts realistic (cyclic) graphical models – that include feedback
and cyclic connections – into a DAG formalism, to allow full causal
inference. So what are the limits of this approach in Neuroimaging?

Challenges for causal modeling in Neuroimaging

The papers in this C&C highlight challenges that face methods for
detecting effective connectivity. These challenges arise mainly in the
analysis of BOLD signals. To date, the only experimental examination
of these issues is reported in the paper that originated this series
(David et al., 2008). The main message from the ensuing exchanges is
the need to account for the effect of the HRF; that is, to include an
appropriate observation model in the analysis, along with careful
evaluation of form, priors and Identifiability.

Another approach to testing the validity and limits of the methods
discussed above has been through computer simulations. The results
of these simulations have been mixed. A number of papers have
supported the use of GCM in fMRI (Deshpande et al., 2009; Stevenson
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20 Such a data set in an animal model including EEG, EcoG, DWI tractography and
fMRI is being gathered by Jorge Riera (Tohoku University), within a collaboration
including F. H. Lopes da Silva, Thomas Knoesche, Olivier David, and the authors of this
paper. This data set will be made publicly available in the near future.
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and Körding, 2010; Witt and Meyerand, 2009). Others have shown
advantages for Bayes-Net methods in short time series and for GCM
for longer time series (Zou et al., 2009).

An extensive set of simulations (NETSIM) has been carried out by
Smith et al. (2010b) using non-stationary (Poisson-type) neural
innovations in several configurations of nodes and simulating
hemodynamics using the fMRI version of DCM. Many different
methods were compared (apart from DCM), distinguishing between
those that estimate undirected association (functional connectivity)
from those that estimate “lagged” dependence (essentially a form of
effective connectivity). The main conclusion was that a few
undirected association methods that only used the information in
the zero lag covariance matrixes perform well in identifying
functional connectivity from fMRI. However, lag-based methods
“performworse”. We speculate that lag information is lost by filtering
with a (regionally variable) HRF and sub-sampling. Thus one could
expect that (stochastic) DCMmight perform better, as supported by a
comparison of SEM and DCM (Penny et al., 2004).

Interesting as these results are, several points remain unresolved.
In the first place, more biophysically realistic simulations are called
for, especially in the simulation of neurodynamics. The neurody-
namics model in DCM for fMRI is intentionally generic, to ensure
identifiability when deconvolving fMRI time-series. There is work
suggesting that discrete time Vector Autoregressive Moving Average
models are immune to sub-sampling and noise relative to VARmodels
(Amendola et al., 2010; Solo, 1986; 2007). Considering that WAGS
influence modeling with VARMAmodels is in the standard time series
textbooks (Lutkephol, 2005), it is surprising that this model has not
been used in Neuroimaging, with the notable exception of (Victor
Solo, 2008).

NETSIM has not yet been tested using continuous timemodels. The
problem, as pointed out by the creators of NETSIM and (Roebroeck
et al., 2005), is not only sub-sampling but the combined effect of sub-
sampling and the low pass filtering of the HRF. However, these
problems only pertain to AR models. Continuous time DCMs have an
explicit forward model of (fast) hidden states and are not confounded
by sub-sampling or the HRF, provided both are modeled properly in
the DCM. The key issue is whether DCM can infer hidden states in the
absence of priors (i.e., stimulus functions) that are unavailable for
design-free (resting state) fMRI studies of the sort generated by
NETSIM. This is an unsettled issue that will surely be followed up in
the near future, with the use of biophysically more informed models
and new DCM developments; e.g., DCM in generalized coordinates,
stochastic DCMs and the DCM–GCM combinations that are being
tested at the moment.

It should further be noted that the effect of sub-sampling (and
hemodynamic convolution) are only a problem at certain spatial and
temporal scales. Undoubtedly it must be a concern, when inferring the
dynamics of fast neural phenomena. However, it is clear that brain
activity spans many different spatial (Michael Breakspear and Stam,
2005) and temporal (Vanhatalo et al., 2005) scales. Multi-scale time
series methods (including WAGS influence measures) have already
been used in econometrics (Gencay et al., 2002) and could be applied
in neuroscience.

One example of events that occur at a time scale that is probably
sufficiently slow to allow simple (AR) WAGS influence analysis are
resting state fluctuations observed in concurrent EEG/fMRI record-
ings. The analysis of causal relations between EEG and BOLD have
been studied by several authors (Eichler, 2005; Jiao et al., 2010;
Valdés-Sosa et al., 2006) and is illustrated in Fig. 4:The autoregressive
coefficients of this first order sparse VAR model suggest that:

1. There are hardly any lag 0 (or contemporaneous) interactions
between ROIs.

2. The only coefficients that survive the FDR threshold in the fMRI are
those that link each ROI to its own past.
3. There is no influence of the fMRI on the EEG.
4. There are many, interesting interactions, among the EEG sources.
5. There are a number of influences of the EEG sources on the fMRI.

This is a consistent causalmodel of EEG induced fMRImodulation—
valid only for the slow phenomena that survive convolution with the
HRF and for the alpha band EEG activity that was investigated here. Of
course there are neural phenomena that might show up at as
contemporaneous at this sampling rate—but we have filtered them
out. An interesting analysis of information recoverable at each scale
can be found in Deneux and Faugeras (2010).

Conclusion and suggestions for further work

1. We believe that the simulation efforts that are being carried
currently out are very useful and should be extended to cover a
greater realism in the neurodynamics, as well as to systematically
test new proposals.

2. It will be also be important to have standardized experimental data
from animals as a resource for model testing. Ideally this data set
should provide intracranial recordings of possible neural drivers,
BOLD-fMRI, surface EEG, diffusion MRI based structural connectiv-
ity and histological based connectivity matrices.20

3. There is a clear need for tools that can assess model evidence (and
establish their Identifiability) when dealing with large model
spaces of biophysically informed SSMs. These should be brought to
bear on the issue of bounds on model complexity, imposed by the
HRF convolution and sub-sampling in fMRI.

4. We foresee the following theoretical developments in Causal
modeling for effective connectivity:
a. The fusion of Bayes–Net and WAGS methods.
b. The WAGS tools developed for combined point and continuous

time stochastic processes may play an important role in the
connectivity analysis of EEG/fMRI, LFP and spike train data.

c. WAGS methods must be extended to non-standard models,
among others: non-Markovian, RDE, and delay differential
equations.

5. The development of exploratory (nonparametric), large scale
state-space methods that are biophysically constrained and
contain modality specific observation equations. This objective
will depend critically on the exploration of large model spaces and
is in consistent with the recent surge of methods analyzing “Ultra-
High” dimensional data.

6. The explicit decomposition of multiple spatial and frequency
scales.

7. Effective connectivity in the setting of Neural Field Modeling

We hope to have focused attention on these issues, within a
unifying framework that integrates apparently disparate and impor-
tant approaches.We are not saying that DCM and GCM are equivalent,
but rather that an integration is possible within a Bayesian SSM
framework and the use of model comparison methods. Our review of
the field has been based on the use of state spacemodels (SSM).While
we are aware that SSMs are not the only possible framework for
analyzing effective connectivity, this formulation allowed us to
present a particular view that we feel will stimulate further work.

Besides reviewing current work we have discussed a number of
new mathematical tools: Random Differential Equations, non-Mar-
kovian models, infinitely differentiable sample path processes, as well
as the use of graphical causality models. We also considered the use of
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continuous-time AR and ARMA models. It may well be that some of
these techniques will not live up to expectations, but we feel our field
will benefit from these and other new tools that confront some of the
particular challenges addressed in this discussion series.
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Appendix A. Wiener's original definition of causality

This approach was first formalized by Wiener (1956) as follows.21

Consider a strictly stationary (possibly complex) stochastic processes22

X1(t, ω) defined as a collection of random variable for all integer time
instants t and realizations ω. Wiener showed how to construct its
“innovation”—the unit variancewhite noise time series E1(t,ω)which is
uncorrelatedwith thepast ofX1(t,ω). The innovationE2(t,ω) can alsobe
constructed for a second time series X2(t,ω). Now consider the random
variable K1(ω), that part of E1(t, ω) uncorrelated with its own past and
thatofE2(t,ω). The variance of this randomvariable lies between0and1
and is the degree to which the time series X1(t, ω) does not depend on
the past of X2(t,ω). One minus this variance is theWiener measure C of
the causal effect of X2(t,ω) on X1(t,ω). Thismeasure of influencewas in
fact expressed by Wiener as an infinite sum:

IW2→1 = ∑
∞

m=1
ρ t; t−mð Þj j2 + ∑

∞

m=1
∑
∞

n=1
ρ t; t−mð Þρ t−n; t−mð Þ

���� ����2 + ⋯

ρ t; sð Þ = E X1 tð Þ;X2 sð Þ
h i

ð25Þ

where X sð Þ indicates the complex conjugate of a time series.
As pointed out in Bressler and Seth (2010) this definition is not

practical. We elaborate on why: First, it is limited to strictly stationary
processes and involves an infinite series of moments without
specification of how to perform the requisite calculations. More
seriously, it only involves a finite number of series and ignores the
potential confounding effect of unobserved (or latent) causes. More
importantly, it adopts the “functional formulation” of von Mises that
lost out to the currently predominant “stochastic formulation” of
Kolmogorov and Doob (Von Mises and Doob, 1941).Nevertheless
Wiener's definition has several points that deserve to be highlighted:

1. It was not limited to autoregressive models but was based on the
more general Moving Average Representation (MAR).

2. Although defined explicitly for discrete time stochastic processes,
the extension to continuous time was mentioned explicitly.

3. Applications in neuroscience were anticipated. In fact, Wiener
elaborated on its possible use: “Or again, in the study of brain
waves we may be able to obtain electroencephalograms more or
21 With some loss of rigor we have simplified the definitions, making our notation
consistent with current time series analysis. For greater detail please consult the
original references.
22 That is Pr(X1(t1, ω), ⋯, X1(tn, ω))=Pr(X1(t1+τ, ω), ⋯, X1(tn+τ, ω)) for all for all n
and τ.
less corresponding to electrical activity in different parts of the
brain. Here the study of the coefficients of causality running both
ways and of their analogs for sets of more than two functions f may
be useful in determining what part of the brain is driving what
other part of the brain in its normal activity”.

4. It is instructive to compare this initial definition with modern
accounts of direct influence.
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Conclusiones 

 

1. Se demuestra que el uso de métodos de regresión penalizados permite 

extender el concepto de causalidad de Granger para el análisis de sistemas 

definidos sobre variedades  espacialmente extendidos, como es el caso de las 

estructuras cerebrales. 

 

2. Se generaliza así el e mapeo paramétrico estadístico (SPM)  de 

Neuroimágenes dinámicas para conectividades y no solo sobre activaciones 

(como era hasta ahora). 

 

3. Se demuestra la utilidad de estos métodos para el estudio del 

funcionamiento cerebral espontáneo y durante tareas cognitivas utilizando tanto 

la resonancia magnética funcional (fMRI) como el registro concurrente de fMRI 

y electroencefalograma (EEG). 
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Recomendaciones 

1. Aplicar los métodos desarrollados para la evaluación de Neuroimágenes 

de pacientes neurológicos. 

2.  Continuar la comprobación de los métodos y determinar sus limitaciones 

con dos tipos de datos: 

a. Obtenidas de simulaciones a gran escala de sistemas neurales realistas 

in sillico.  

b. Con datos experimentales estandarizados de animales como del 

siguiente tipo: registros intracraneales de los posibles generadores neurales, 

BOLD fMRI-, la superficie EEG, conectividad estructural basada en MRI de 

difusión y matrices de conectividad basadas en la histología. 

3. Avanzar en los siguientes desarrollos teóricos en modelos causales para 

la conectividad efectiva: 

a. La fusión de métodos de redes Bayesianas y los métodos basados en 

Causalidad de Granger (WAGS). 

b. Las herramientas de WAGS desarrolladas de los procesos estocásticos 

de tiempo pueden  jugar un papel importante en el análisis de la conectividad 

de EEG / fMRI, potenciales de campos locales y los datos de trenes de 

espigas. 
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c. Los métodos WAGS deben extenderse a modelos no estándar, entre 

ellos: los no markovianos, RDE, y las ecuaciones diferenciales con retardo así 

como para modelos de campos neurales 
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